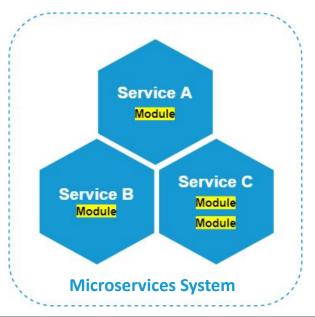
Master Thesis: Final Talk

Investigating Quality Attributes and Best Practices of Microservices Architectures

Presented by: Faizan Zafar

Examiners: Prof. Dr. rer. nat. Horst Lichter Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor: Alex Sabau, M.Sc.



Outline

- Background
- Problem Statement
- Research Questions
- Research Approach
- Results
- Conclusion
- Future Work
- Summary

- Microservice Architectures (MSA) present viable solutions to modern problems
- MSA offer increased scalability, low coupling, high resilience, independent deployment
- MSA pose **novel** challenges in essential software engineering activities

Background

- Tackling the high **complexity** in building software systems feasibly with the MSA pattern
 - Design Guideline: A fundamental directive which maintains certain rules and responsibilities, and impacts a specified scope of the system architecture

- Understanding how quality is conceptualized and described in MSA
 - *Quality Characteristic:* An **intrinsic** property of a service that gives it the ability to **satisfy** stakeholder requirements

- Unstructured and unorganized information on design guidelines used to construct MSA
- Lack of information on how to **adopt** and exercise such guidelines
- Lack of **standardised** concepts that can enable targeted **quality** assurance of MSA
- Perceived lack of **depth** and **specificity** with respect to describing quality in MSA
- Ambiguity on how the design guidelines concretely affect quality in MSA

Research Questions

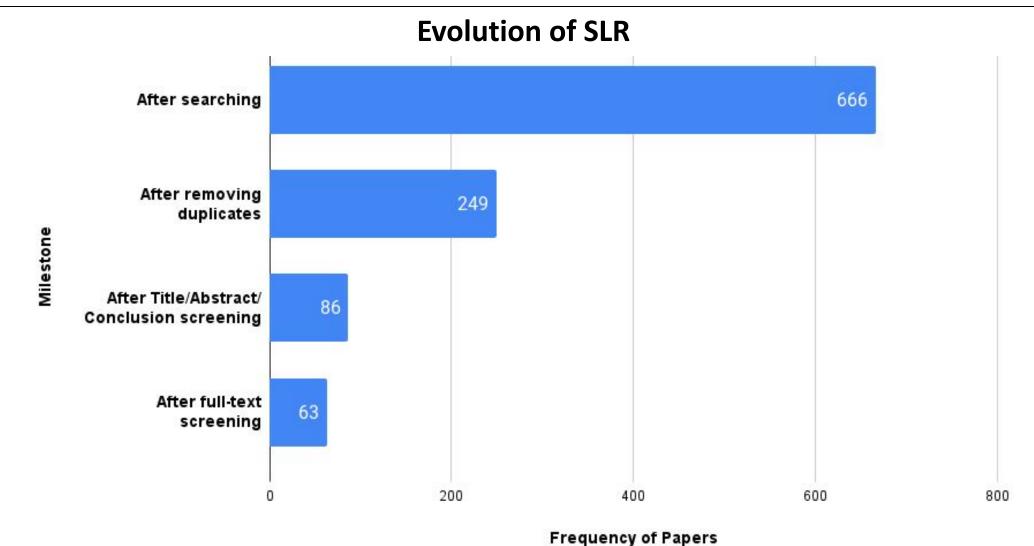
RQ1: Which **design guidelines** exist for **constructing** meaningful MSA?

RQ2: Which **quality characteristics** adequately describe the quality of MSA and how can they be meaningfully represented in the form of a **Quality Model**?

RQ3: Which quality characteristics are **affected** by the existing design guidelines of MSA?

Research Approach: RQ1

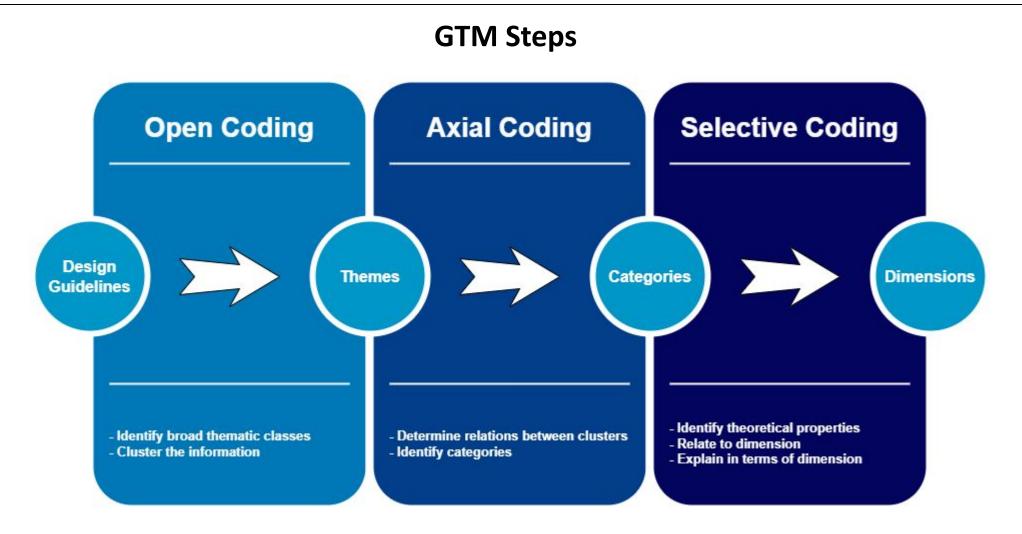
• **RQ1**: Which **design guidelines** exist for **constructing** meaningful MSA?



 Performed a Systematic Literature Review (SLR) to gather existing design guidelines associated with constructing meaningful MSA

Employed the Grounded Theory Methodology (GTM) to categorise and structure the collected information into a catalogue

Research Approach: RQ1 - SLR



- **Complex** nature of our collection of MSA design guidelines
- Needed a **fitting** method to derive **categories** for the collected information
- GTM aims to add **structure**, in stages, to unstructured data
- GTM identified key **themes** and concepts across the catalogue
- Performed three sequential steps: open coding, axial coding, and selective coding

Research Approach: RQ1 - GTM

Research Approach: RQ2

• **RQ2**: Which **quality characteristics** adequately describe the quality of MSA and how can they be meaningfully represented in the form of a **Quality Model**?

- Extracted and described quality characteristics relevant to MSA from academic literature
- Extended the ISO/IEC 25010 Quality Model using the Concept Discovery method
- **Evaluated** the resulting *preliminary* Quality Model via semi-structured **interviews**
- Integrated the evaluation feedback to obtain the *revised* Quality Model

Research Approach: RQ2 - Extending ISO/IEC 25010 Quality Model

• The **ISO/IEC 25010** Product Quality Model determines which **quality** characteristics will be considered when evaluating the properties of a software product

Research Approach: RQ2 - Evaluation of Preliminary Quality Model

• **Question:** To what extent does the *preliminary* Quality Model, including all its elements,

adequately describe the quality of MSA?

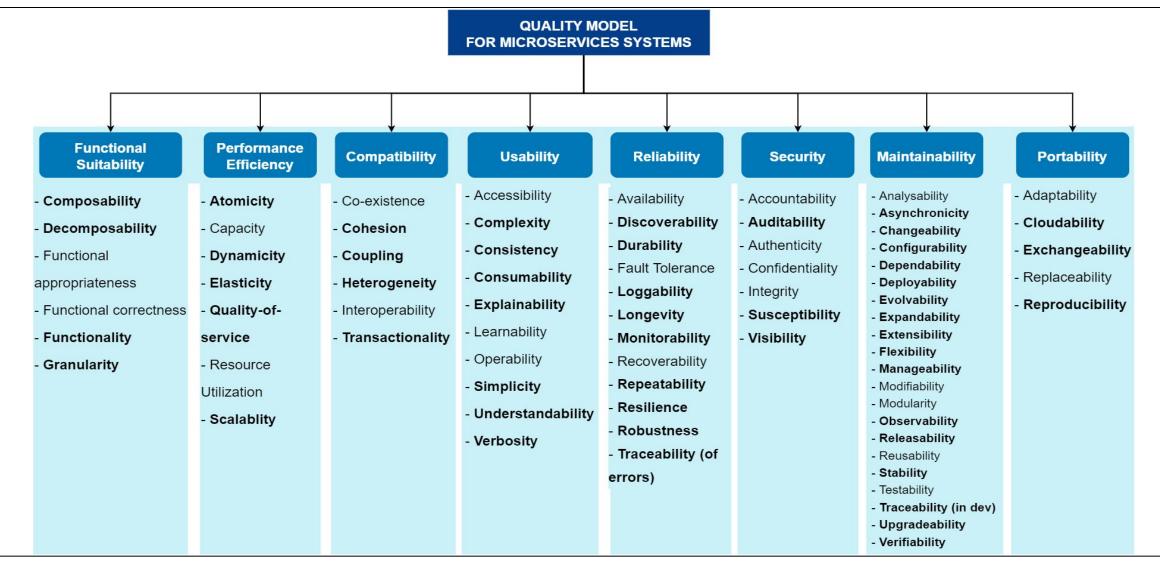
- **Developed** an interview protocol
- Interviewed 13 seasoned microservices professionals (7 practitioners and 6 researchers)
- **Reviewed** different segments of the *preliminary* Quality Model (structure + descriptions)
- Noted the answers and comments into a feedback document

Research Approach: RQ3

RQ3: Which quality characteristics are affected by the existing design guidelines of MSA?

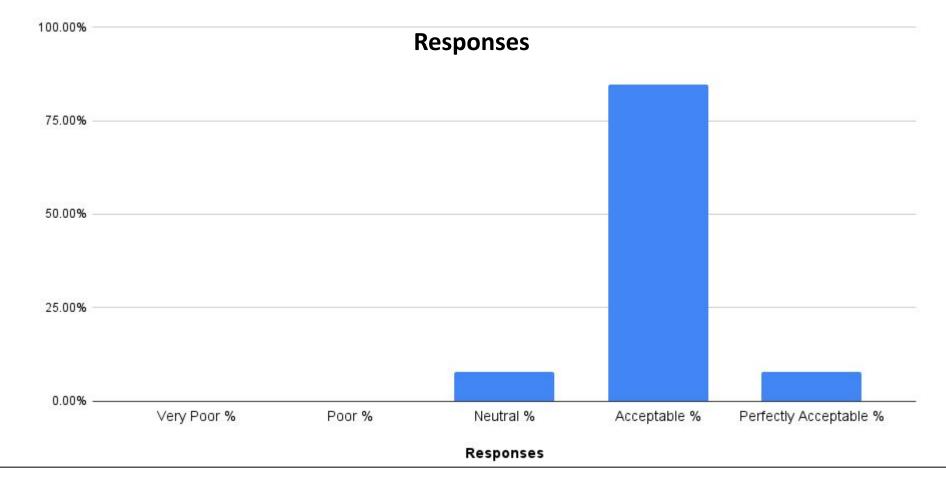
- Approach:
 - Mapped each of the discovered design guidelines to their affecting quality

characteristics using academic literature

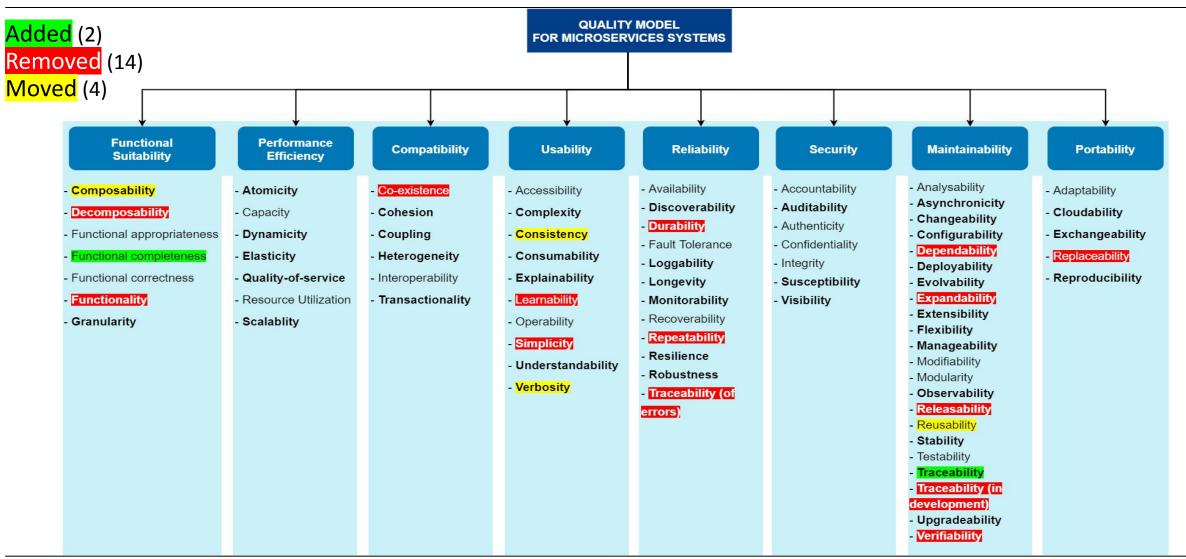

Results: (Preliminary) Quality Model for MSA

- 82 quality characteristics relevant to MSA, including 51 novel Quality Factors + 23 ISO
 Quality Factors
- A Quality Model which meaningfully describes and structures the quality characteristics

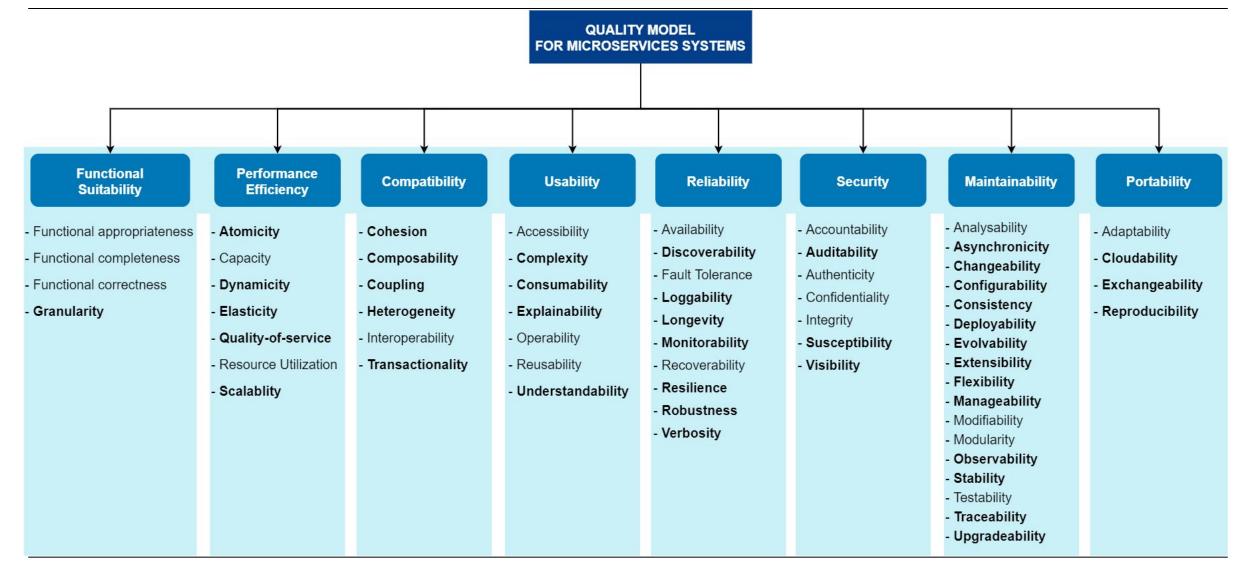
Results: Preliminary Quality Model



Results: Evaluation of Preliminary Quality Model


Question: On a scale from 1 (Poor) to 5 (Perfectly Acceptable), how would you assess the overall appropriateness of the proposed Quality Model for MSA?

Results: Revision of Preliminary Quality Model



- 70 quality characteristics relevant to MSA, including 41 novel Quality Factors + 21 ISO
 Quality Factors
- A Quality Model which meaningfully describes and structures the quality characteristics

Results: Revised Quality Model

Results: Descriptions of Quality Characteristics

Descriptions of Quality Attributes in Revised Quality Model

Quality Attribute	Description	Literature Source(s)
Maintainability	Degree of effectiveness and efficiency with which a microservices system	[25],[26],[28],[32],[33],[34],[35],[42],[43],[45],[49],[50],[51],[58],[60],[63],[5],[6],[9],[12],[16],[21],[22],[46],[52]
Reliability	period of time, regardless of whether other microservices in the system	[17],[26],[27],[28],[30],[32],[33],[35],[37],[38],[41],[42],[43],[49],[51],[54],[58],[59],[6 2],[1],[2],[5],[9],[14],[20],[29],[44],[53]

Descriptions of Quality Factors in Revised Quality Model

Quality Attribute	Quality Factor	Description of Quality Factor	Literature Source(s)
Maintainability	Deployability	Degree to which microservices can be deployed independently without downtime, and without restarting the entire microservices system.	[10],[15],[26],[27],[28],[30],[33],[57],[60],[7],[11],[12],[46]
Reliability	Availability	Degree to which a microservices system is operational and usable when accessed by an authorized entity.	[10],[15],[17],[23],[25],[26],[27],[28],[31],[32],[34],[35],[38],[40],[41],[4 3],[47],[51],[54],[58],[59],[60],[62],[1],[5],[13],[20],[29],[44],[61]

• A structured **catalogue** of 239 design guidelines, including *best practices, design principles*, and *design patterns* that are employed for constructing MSA

• A clear and sound three-dimensional **categorisation scheme** for the catalogue

Results: Catalogue Categorisation Scheme

Three-Dimensional Categorisation Scheme

Туре	Scope	Design
Design Pattern	Architecture	Migration
Design Principle	Code Management	Universal
Best Practice	Communication	
Context-sensitive Best Practice	Data Consistency	
	Data Management	
	Data Persistence	
	Decomposition	
	Deployment	
	Development	
	Distribution	
	Entry Point	
	Fault Tolerance	
	Infrastructure	
	Monitoring	
	Security	
	Supplementals	
	Testing	

Results: Catalogue Categorisation Scheme - Dimensions

- Dimensions:
 - *Type* represents the **semantic** group of the design guideline

- Scope describes the area which the design guideline is responsible for

 Design reports the type of activity that the design guideline undertakes with respect to designing the system architecture

Results: Catalogue Categorisation Scheme - Type categories

- A *Design Pattern* explains the **solution** to a well-defined **problem**, in such a way that we are able to use the solution repeatedly
 - Naming schema: Nouns (e.g. *API Gateway*)

- A Design Principle constitutes a set of prescribed considerations that support consistency in design decisions
 - Naming schema: Nouns and verbs (e.g. Statelessness, Vertical Layering)

Results: Catalogue Categorisation Scheme - Type categories

- A *Best Practice* serves as a means for appropriate **adherence** to established rules, along with detecting **deviations** from their adherence
 - Naming schema: Imperatives (e.g. *Encrypt sensitive data*)

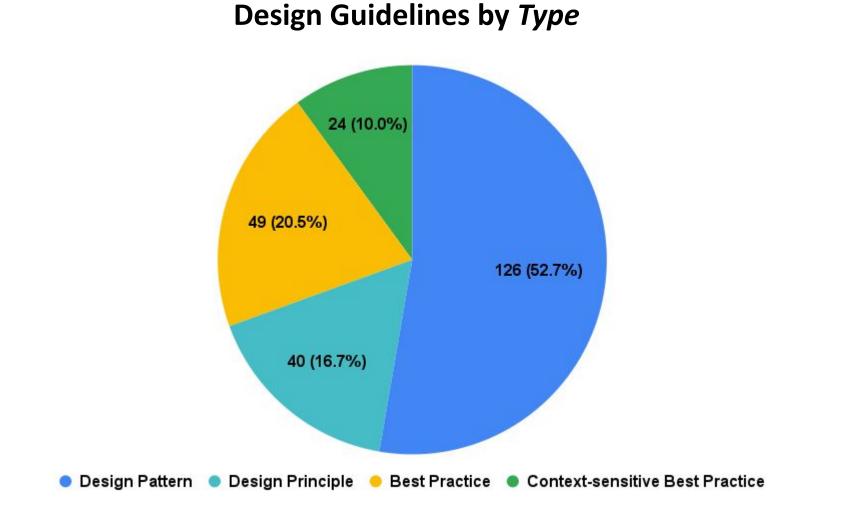
- A *Context-sensitive Best Practice* is a best practice that **only** proves to be optimal in **certain** practical contexts or complex situations
 - Naming schema: Imperatives (e.g. *Limit language diversity*)

Results: Catalogue Categorisation Scheme - Scope categories

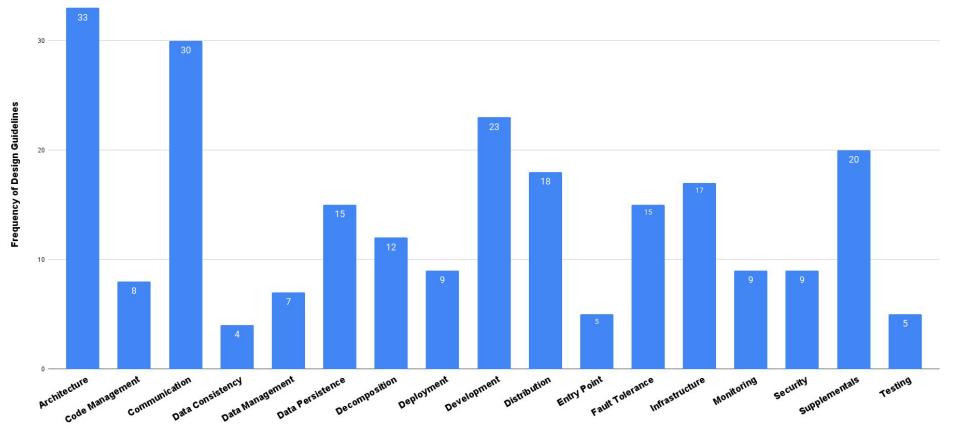
- Architecture
- Code Management
- Communication
- Data Consistency
- Data Management
- Data Persistence
- Decomposition
- Deployment

- Development
- Distribution
- Entry Point
- Fault Tolerance
- Infrastructure
- Monitoring
- Security
- Supplementals
- Testing

Results: Catalogue Categorisation Scheme - Design categories


• A *Migration* guideline is **exclusively** meant to be used for the migration from monolithic architectures to MSA

• A *Universal* guideline is generally applicable and **always** holds in microservices design and development


Results: Categorisation of the Guidelines Catalogue

Results: Categorisation of the Guidelines Catalogue


Design Guidelines by *Scope*

Scope

Results: Categorisation of the Guidelines Catalogue

Results: Guidelines Catalogue

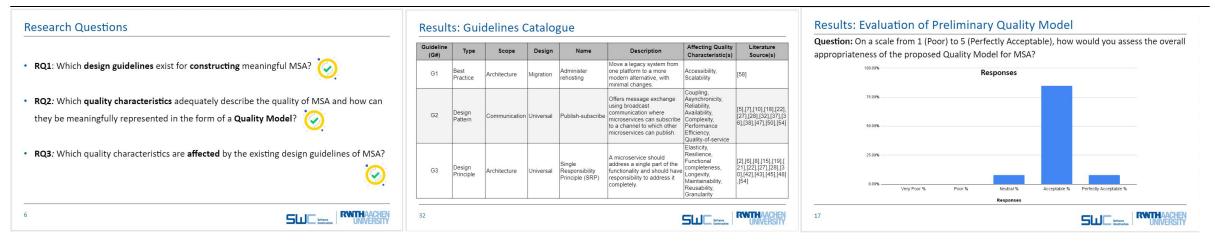
Guideline (G#)	Туре	Scope	Design	Name	Description	Affecting Quality Characteristic(s)	Literature Source(s)
G1	Best Practice	Architecture	Migration	Administer rehosting	Move a legacy system from one platform to a more modern alternative, with minimal changes.	Accessibility, Scalability	[58]
G2	Design Pattern	Communication	Universal	Publish-subscribe	Offers message exchange using broadcast communication where microservices can subscribe to a channel to which other microservices can publish.	Coupling, Asynchronicity, Reliability, Availability, Complexity, Performance Efficiency, Quality-of-service	[5],[7],[10],[18],[22], [27],[28],[32],[37],[3 6],[38],[47],[50],[54]
G3	Design Principle	Architecture	Universal	Single Responsibility Principle (SRP)	A microservice should address a single part of the functionality and should have responsibility to address it completely.	Elasticity, Resilience, Functional completeness, Longevity, Maintainability, Reusability, Granularity	[2],[6],[8],[15],[19],[21],[22],[27],[28],[3 0],[42],[43],[45],[48] ,[54]

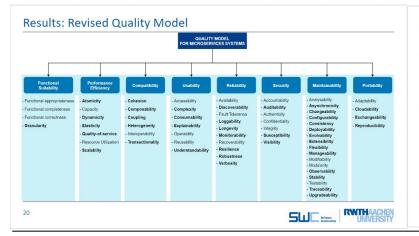
Results: Key Findings

- **Most** frequent *Type* of design guidelines: *Design Patterns*
- **Least** frequent *Type* of design guidelines: *Context-sensitive Best Practices*
- Most frequently reported design guidelines:
 - Independent and automated deployment (including independent development)
 - Isolation of failures
 - Lightweight containerization
- **Most** frequently mapped quality characteristics:
 - *Complexity, Coupling, Scalability, Evolvability, Resource Utilization, Availability*

Conclusion

- Investigated MSA from the architectural design and system quality perspectives
- Collected and categorised 239 MSA design guidelines into a Guidelines Catalogue
- Extracted, structured and described 70 quality characteristics into a **Quality Model**
- Performed **evaluation** to validate and improve the developed Quality Model
- Determined a set of quality characteristics **affecting** each of the design guidelines


Future Work


- **Adjustment** of the SLR method to enhance the catalogue
- **Grey Literature Review** to determine particularly industry-driven MSA design guidelines
- Performing evaluation of the Guidelines Catalogue
- Determining the **applicability** of the proposed Quality Model in particular **use cases**
- Formulating a Quality Model around **process-oriented** quality characteristics

Summary

Descriptions of Quality Attributes in Revised Quality Model

Quality Attribute	Description	Literature Source(s)	
Maintainability	Legree of effectiveness and efficiency with which a microservices system	[25],[26],[28],[32],[33],[34],[35],[42],[43], 45],[49],[50],[51],[58],[60],[63],[5],[6],[9], 12],[16],[21],[22],[46],[52]	
Reliability	period of time, regardless of whether other microservices in the system	[17],[26],[27],[28],[30],[32],[33],[35],[37] 38],[41],[42],[43],[49],[51],[54],[58],[59], 2),[1],[2],[5],[9],[14],[20],[29],[44],[53]	

Descriptions of Quality Factors in Revised Quality Model

	Degree to which microservices can be deployed	
Deployability	independently without downtime, and without restarting the entire microservices system.	[10],[15],[26],[27],[28],[30],[33],[5]],[60],[7],[11],[12],[46]
Availability	Degree to which a microservices system is operational and usable when accessed by an authorized entity.	[10],[15],[17],[23],[25],[26],[27],[24],[31],[32],[34],[35],[38],[40],[41],[4 3],[47],[51],[54],[58],[59],[60],[62], 1],[5],[13],[20],[29],[44],[61]
		the entire microservices system.

Conclusion

34

- Investigated MSA from the architectural design and system quality perspectives
- Collected and categorised 239 MSA design guidelines into a Guidelines Catalogue
- Extracted, structured and described 70 quality characteristics into a Quality Model
- Performed evaluation to validate and improve the developed Quality Model
- Determined a set of quality characteristics **affecting** each of the design guidelines

Thank you!

