
The present work was submitted to
the Research Group
Software Construction

of the Faculty of Mathematics,
Computer Science, and
Natural Sciences

Master Thesis

Investigating Quality
Attributes and Best Practices

of Microservices
Architectures

presented by

Faizan Zafar

Aachen, November 7, 2022

Examiner

Prof. Dr. rer. nat. Horst Lichter

Prof. Dr. rer. nat. Bernhard Rumpe

Supervisor

Alex Sabau, M.Sc.

Acknowledgment
First and foremost, I would like to offer my profound thanks to my esteemed supervisor,
Alex Sabau, for guiding and supporting me consistently throughout the whole thesis
process as well as for providing me with valuable feedback every step of the way.

I would also like to extend my kind regards to Prof. Dr. Horst Lichter and Prof. Dr.
Bernhard Rumpe for examining this thesis and for providing insightful suggestions and
feedback in the duration of the thesis.

Next, I would like to convey my sincere thanks to the evaluation interview participants
who agreed to provide their precious time and helpful feedback that proved to be very
important for the results of the thesis.

Last but not the least, I would like to express my immense gratitude to my dearest
friends and family from near and far, especially my brother. I would like to appreciate
their constant moral support and continuous encouragement in not only the period of
the thesis but my entire masters study.

Faizan Zafar

Abstract
Software systems that are built in accordance with the Microservice Architecture pattern
present viable solutions to modern problems in the rapidly evolving world of software
engineering, particularly for industrial applications. This architectural pattern offers
various benefits such as increased scalability, low coupling, high resilience, independent
deployment, and greater agility compared to other architectural patterns. However, this
highly distributed architectural paradigm poses novel challenges in essential software
engineering activities such as quality assurance.

Due to the high complexity of building systems by following the Microservice Archi-
tecture pattern, design guidelines, including best practices, design patterns, and design
principles, are employed by software architects and developers which help in construct-
ing microservices applications in the most optimal ways. However, knowledge around
such guidelines is widely dispersed and unorganised. As a result, there is a lack of a
structured knowledge base of design guidelines that can be used as a reference guide for
designing Microservices Architectures.

In addition, with respect to the quality assurance of microservices systems, there is a
lack of comprehensiveness in the industry as well as academia concerning the quality of
Microservices Architectures, including how it can be conceptualised and described. In
relation to this, there is very limited information available on how the design guidelines
affect the quality characteristics of a microservices application. As a result, there is a
lack of standardised concepts that can enable targeted quality assurance of Microservices
Architectures.

In this thesis, we create and structure a catalogue of 239 design guidelines, including
best practices, design patterns, and design principles, that are used by software architects
and developers to build Microservices Architectures. We also determine a set of quality
characteristics that are related to each of the existing design guidelines. Additionally, we
propose and evaluate a Quality Model which outlines and explains 70 quality character-
istics that mutually and meaningfully describe the quality of microservices applications
and architectures.

Contents

1. Introduction 1
1.1. Background . 1
1.2. Thesis Structure . 3

2. Problem Statement 5
2.1. Motivation . 5
2.2. Research Questions . 6
2.3. Scope . 6

3. Related Work 7
3.1. Literature Research . 7

4. Research Approach 9
4.1. Overall Approach . 9
4.2. Performing a Systematic Literature Review 10
4.3. Developing a Catalogue of Design Guidelines 23
4.4. Formulating a Quality Model For Microservices Architectures 26
4.5. Mapping Design Guidelines to Quality Characteristics 29

5. A Quality Model for Microservices Architectures 31
5.1. Preliminary Quality Model . 31
5.2. Evaluation of Preliminary Quality Model 32
5.3. Revision of Preliminary Quality Model . 42
5.4. Revised Quality Model . 43

6. A Catalogue of Design Guidelines for Microservices Architectures 57
6.1. Catalogue Categorisation Scheme . 57
6.2. Catalogue of MSA Design Guidelines . 61
6.3. Analysis . 63

7. Discussion 65
7.1. Results Findings . 65
7.2. Research Questions Findings . 70
7.3. Implications of Results . 71
7.4. Threats to Validity . 72

8. Conclusion and Future Work 73
8.1. Summary . 73

i

8.2. Future Work . 73

A. Appendix 75
A.1. Descriptions of the Discarded Quality Factors 76

Bibliography 81

Glossary 89

List of Tables
4.1. Search Criteria for the SLR . 12
4.2. Selection Criteria for the SLR . 13
4.3. Exclusion Criteria for the SLR . 14
4.4. Database and Literature Selection for the SLR 15
4.5. SLR Corpus . 18
4.6. SLR Corpus (continued) . 19
4.7. SLR Corpus (continued) . 20
4.8. SLR Corpus (continued) . 21
4.9. SLR Corpus (continued) . 22

5.1. Preparatory Information for the Evaluation Interview 34
5.2. Interview Protocol for the Evaluation Interview 35
5.3. Participants for the Evaluation Interview 37
5.4. Participants for the Evaluation Interview (continued) 38
5.5. Quality Attributes with Descriptions . 45
5.6. Quality Attributes with Descriptions (continued) 46
5.7. Quality Factors with Descriptions . 47
5.8. Quality Factors with Descriptions (continued) 48
5.9. Quality Factors with Descriptions (continued) 49
5.10. Quality Factors with Descriptions (continued) 50
5.11. Quality Factors with Descriptions (continued) 51
5.12. Quality Factors with Descriptions (continued) 52
5.13. Quality Factors with Descriptions (continued) 53
5.14. Quality Factors with Descriptions (continued) 54
5.15. Quality Factors with Descriptions (continued) 55

6.1. Three-Dimensional Categorisation Scheme 58
6.2. Categories of Scope dimension . 60
6.3. Guidelines Catalogue (Preview) . 62

7.1. Important Topics found in the SLR Corpus 66
7.2. Frequencies and Coverage of Quality Characteristics in the Guidelines

Catalogue . 68
7.3. Frequencies and Coverage of Quality Characteristics in the Guidelines

Catalogue (continued) . 69

A.1. Discarded Quality Factors with Descriptions 76
A.2. Discarded Quality Factors with Descriptions (continued) 77

iii

A.3. Discarded Quality Factors with Descriptions (continued) 78

List of Figures
4.1. State Chart of the Overall Research Approach 9
4.2. State Chart of the SLR Process . 11
4.3. Evolution of the SLR . 16
4.4. State Chart displaying the steps performed in developing a catalogue of

design guidelines . 24
4.5. The steps in the Grounded Theory Methodology for categorising the

Guidelines Catalogue . 25
4.6. State Chart displaying the steps performed in developing a Quality Model

for MSA . 26
4.7. The ISO/IEC 25010 Software Product Quality Model 27
4.8. State Chart displaying the steps performed in mapping design guidelines

to quality characteristics . 29

5.1. Structure of the Preliminary Quality Model 31
5.2. Ratio of Quality Factors by Type . 32
5.3. State Chart of the Evaluation Approach 32
5.4. Interview Participants by Organisation Size 39
5.5. Interview Participants by Years of MSA Experience 39
5.6. Interview Participants by Field . 40
5.7. Interview Participants by Expertise . 40
5.8. Overall Appropriateness of the Preliminary Quality Model 41
5.9. Revision of the Preliminary Quality Model - First Stage 42
5.10. Revision of the Preliminary Quality Model - Second Stage 43
5.11. A Quality Model for MSA . 44
5.12. Ratio of Quality Factors by Type . 44

6.1. Frequency of Design Guidelines by Type 63
6.2. Frequency of Design Guidelines by Scope 64
6.3. Frequency of Design Guidelines by Design 64

7.1. Frequency of Scholarly Papers by Year in the SLR corpus 65

v

List of Source Codes

vii

1. Introduction

This chapter presents the background and concepts of the current research that serve as
the basis for understanding the approaches and results of the thesis. Lastly, it outlines
the structure of this thesis document.

1.1. Background
Software systems are constructed to satisfy organisations’ business goals, and the sys-
tem architecture is a bridge between those business goals and the final resulting system
[BCK12]. The architecture of a software system refers to the structure of its elements,
their interrelationships, and the principal design decisions made during the system’s de-
velopment and any subsequent evolution [BCK12]. Especially when constructing large
and complex systems, architects must build the entire software architecture using the
most appropriate architectural paradigm in order to ensure smooth operations. Mi-
croservices Architectures (MSA) is a software architecture style that structures a soft-
ware application into several individual microservices narrowly aligned to the business
domain, instead of a single, strongly-coupled application utilising a monolithic architec-
ture [Ric17]. Microservices are a suite of small services, each running on its own process
and intercommunicating with lightweight mechanisms [OMA18]. Key characteristics of
microservices include; small and focused on doing one thing well, autonomous, compos-
ability, technology heterogeneity, resilience, independent scaling, ease of deployment,
and organisational alignment [Neu15].
In practice, microservices are usually developed in a decentralised manner and oper-

ated on by specialised teams from different organisational units [Ric17]. The individual
microservices are loosely coupled and independently deployable often running on geo-
graphically distributed resources [Ric17]. MSA are deemed as an evolution of Service-
oriented Architectures (SOA). SOA is a non-centralised architectural paradigm based on
the communication between services in order to offer functionality, including consuming
third-party services [MT10]. However, SOA pose challenges in communication and level
of granularity and MSA offer to mitigate those challenges [Neu15].
Architectural design plays an important role in the success of a software system in

terms of customer satisfaction. With the MSA pattern, the development complexity of an
individual component is decreased. However, the increasing amount of components and
continuous changes in the microservices system lead to increase in system complexity.
Another core aspect is that microservices applications are distributed systems by nature,
thus operational complexity for managing a distributed system is added. In order to
cope with this complexity, design guidelines have been researched upon in academia and

1

1. Introduction

employed by architects and developers in industry for several years.

Definition 1. A Design Guideline is a fundamental directive which maintains certain
rules and responsibilities, and impacts a specified scope of the system architecture.

Such guidelines are not only followed and incorporated during the design phase, but
also during the development phase of a microservices system. Design guidelines provide
architects and developers with directions and advice for constructing MSA since following
a particular guideline standardises the solution to a particular problem, and contributes
to one or more aspects of the system quality. However, there exist numerous different
advises labelled as design guidelines in industry and academia. In this work, we want to
systematically collect the design guidelines and develop a structured catalogue for the
same. For the purposes of this thesis, we refer to design guidelines as an umbrella term
covering the best practices, design patterns, and design principles used to build MSA.
These three individual concepts are defined and explained later in Chapter 6.1.
The concept of quality is often used in daily life and is perceived as self-explanatory

and obvious [Bev95]. However, there are multi-faceted notions of the concept of quality
from different views [GQ84]. According to ISO 9000 which is the European standard for
quality management systems, quality is the degree to which a set of inherent character-
istics of a product, software or service fulfills requirements [Sta15]. Similarly, ISO/IEC
25010, which is the international standard for system and software quality models, ex-
plains the quality of a system as the degree to which the system satisfies the stated and
implied needs of its various stakeholders, and thus provides value [ISO11]. Typically,
software companies gain revenue by retaining existing customers and gaining more cus-
tomers [MSM16]. Customer satisfaction plays a vital role in customer retention, and can
be achieved by providing a service that creates value for the customer. This eventually
leads the service provider to establish a loyal relationship with the customer. In order to
achieve customer satisfaction, software companies continuously strive to understand and
implement guidelines that would help them in delivering high quality services to their
stakeholders. Hence, quality is of utmost importance in any kind of software system and
should be incorporated from the initial design phases such as code architecture design
and user interface design [Kas17].
Architectural drivers have a significant influence over the design of a microservices

system. The need to improve system quality, and technical and business constraints
constitute such drivers. The architectural decisions made during the design phase influ-
ence the quality characteristics of a microservices system.

Definition 2. A Quality Characteristic is an intrinsic property of a product, software
or service that gives it the ability to satisfy stakeholder requirements.

Such characteristics are required to be achieved to a certain level in order to ensure
system quality in a specific direction. The requirement to reach a certain level of a
particular quality characteristic impacts the architecture and influences the architectural
design decisions made in a microservices system [ISO11].

2

1.2. Thesis Structure

The ISO/IEC 25010 standard defines a Quality Model as a conceptual construct to
describe the quality of a product, software or service as a decomposition into character-
istics and sub-characteristics. A Quality Model enables to assess and predict the quality
of a product, software or service by the operationalisation of its quality characteristics
[Wag13]. The quality of services in microservices systems typically considers technical
and behavioural aspects such as reliability, maintainability and performance in order to
satisfy customer needs [BCK12], [Di 17], [Li17]. However, the understanding of quality
in MSA is considered incomplete primarily due to lack of research around it, with very
few known approaches partially tackling it. In this work, we want to formulate a Qual-
ity Model (QM) tailored to microservices applications by investigating, structuring and
describing several quality characteristics relevant to MSA.
The decisions made around the architecture of a microservices system should realisti-

cally take into account important aspects such as the trade-offs for each design guideline,
the balance between the different quality characteristics specified for the system, and the
benefits offered by the design guideline under consideration. Since MSA are an emerging
innovation, the relationship between the design guidelines and the quality characteristics
is not clearly defined. This is a point of concern from a software engineering standpoint
since such understanding is fundamental and crucial to correctly design applications
using MSA. In this work, we want to determine the quality characteristics which are
related to the MSA design guidelines.

1.2. Thesis Structure
This thesis is organised into eight chapters. Chapter 1 consists of the introduction and
background of the research domain so that the problem and related work are clearly
understood. Chapter 2 consists of the motivation put forward, the research questions
put together, and the scope defined for the thesis. Chapter 3 consists of the prior work
related to the research domain. Chapter 4 consists of the research methodology that
was adopted in this thesis. Chapter 5 consists of the proposed Quality Model as a prime
outcome of the thesis, including the evaluation method applied. Chapter 6 consists of
the proposed Guidelines Catalogue as a major artifact of the thesis. Chapter 7 consists
of a discussion on the thesis results, research questions, implications, and threats to
validity. Chapter 8 consists of the summary of the current work and the outline of the
future work.

3

2. Problem Statement

This chapter discusses the need and motivation for this research. It outlines the research
questions that we define and tackle as part of this thesis. Lastly, it specifies the scope
of this work.

2.1. Motivation
From their conception in 2014 to date, MSA have become the subject of increased in-
dustrial application and academic research in recent years [CZL21]. MSA, being a soft-
ware architecture pattern, defines the rules, patterns and constraints respectively on
how to build the software architecture. Even though MSA have been researched upon
in the past, we realised that this domain has not been addressed to its full potential.
Specifically, the understanding around the design and the concrete implementation of
this architectural pattern is not clear and comprehensive enough. Additionally, we re-
alised that there exist complex operations and hidden costs that need to be handled
by architects and developers when designing, implementing and testing microservices
applications. For these purposes, there are plenty of design guidelines, including best
practices, design patterns, and design principles, in industry and academia to construct
MSA. However, information around such design guidelines is mostly unstructured, non-
standardised and scattered. Consequently, it is unclear how to adopt and exercise the
guidelines. It is also ambiguous how the design guidelines concretely affect the quality of
a microservices application as it is difficult to determine which specific aspect of quality
is influenced by the application of a particular design guideline under consideration.
Lack of understanding and documentation on how to design and develop MSA can lead

to negative consequences such as increased development costs, decreased productivity of
the developers, and challenges in product management. We observed that several design
guidelines seem to exclude each other (e.g. Orchestration vs Choreography), however
a clear overview of this is missing. As such, we aimed to perform a study in order to
discover existing design guidelines in the context of MSA.
Building MSA without adhering to certain design guidelines significantly increases the

risk of the deterioration of system quality. Industry-experts and academic researchers
dived into determining and describing the quality of software systems with various levels
of granularity, and have proposed different Quality Models for the same. The ISO/IEC
25010 standard constitutes such a model. However, with this established QMs, there is a
perceived lack of depth and specificity with respect to describing the quality of microser-
vices applications and architectures, as also detailed in Chapter 4.4.2. For example, we
studied the ISO/IEC 25010 QM and noticed that it does not cater to the scalability

5

2. Problem Statement

aspect of a software product. Meanwhile, we know from literature and practice that
increased scalability is one of the essential benefits and propositions of the MSA pat-
tern [BD19], [JC19], [KM19]. Hence, we were motivated to propose an extension of the
ISO/IEC 25010 standard by a finer, more granular Quality Model. The proposed model
describes additional sub-characteristics being relevant for MSA, and aligns them with
the given classification of the quality characteristics of the ISO/IEC 25010 standard.

2.2. Research Questions
Keeping the motivation and vision in mind, we proposed the following Research Ques-
tions (RQs) that we aimed to answer with this thesis:

• RQ1: Which design guidelines exist for constructing meaningful Microservices
Architectures?

The first research question delivers a structured catalogue of design guidelines, includ-
ing best practices, design patterns, and design principles, that are or should be adopted
when dealing with MSA. We addressed this question by conducting a Systematic Liter-
ature Review (SLR) in order to establish a well-rounded literary foundation.

• RQ2: Which quality characteristics adequately describe the quality of Microser-
vices Architectures and how can they be meaningfully represented in the form of
a Quality Model?

The second research question proposes a Quality Model which specifies a variety of
quality characteristics that collectively aim to sufficiently describe the quality of mi-
croservices applications and architectures.

• RQ3: Which quality characteristics are affected by the existing design guidelines
of Microservices Architectures?

Lastly, the third research question presents a mapping to identify the quality charac-
teristics relevant to MSA which are related to and affected by each of the existing design
guidelines around MSA.

2.3. Scope
For carrying out comprehensive research and in order to study the architectural infor-
mation which is important for analysing the quality of microservices systems, we only
considered Microservices Architectures for this study, thus the scope of this thesis is
limited to such architectures.

6

3. Related Work

This chapter reveals insights into the current state of research and the existing knowledge
related to the subject of interest. It presents the views of different authors regarding the
research domain in existing literature.

3.1. Literature Research
Prior work reports the state-of-the-art approaches that are centered around investigat-
ing MSA. Researchers have tried to capture the state of the latest research on MSA
pertaining to various use cases. In [JC19], the authors presented a detailed review of
the scientific approaches that are targeted towards MSA, and proposed a multi-tiered
taxonomy to classify the research work around MSA. The authors discussed various
distributed computing paradigms that are utilising microservices, including the novel
challenges in this domain. [DML17] applied a systematic mapping study to identify,
categorise, and validate the latest findings on architecting microservices considering the
publication trends, research focus, and the potential for adoption in industry. The au-
thors proposed a categorisation scheme for classifying 71 selected research publications.
[BNK20] explained a variety of opportunities and problems associated with adopting and
implementing MSA. The research method of this work harnessed 19 interviews with soft-
ware architects harbouring experiences in a range of areas including corporate systems,
middleware, SOA and microservices.
As part of our research, we found that published secondary studies on collections of

best practices, design patterns, and design principles around MSA are limited. [HW+18],
[Bog+21], [BD19], [CZL21], [Lai+21], [MA18], [Bil+22], [Val+20], [WKR21], [VF21],
[Abd+21] present secondary studies in the form of Systematic Literature Reviews or
Systematic Mapping Studies which employed a mixture of mostly academic literature
and sometimes grey literature sources for collecting and validating relevant informa-
tion with respect to the research question under consideration. Additionally, studies
in [Che+15], [HBK20], [MA18], [Oli+20], [Sou+17], [Val+20], [WKR21], [VF21] loosely
grouped the MSA design guidelines they reported based on some qualitative measure.
[WKR21] gathered and classified the best practices, related challenges, and current solu-
tions used by industry practitioners who design and develop microservices applications
for commercial purposes. The research methods of this work include 21 interviews with
microservices practitioners and an online survey with 37 respondents. [MA18] investi-
gated the architectural patterns that are used in 30 open source microservices systems
via detailed code and design reviews. [Oli+20] performed a study to identify design
patterns that impact architectural design decisions related to the service size, database

7

3. Related Work

sharing, and the level of coupling of services. Using this information, the authors pro-
posed a method for architectural trade-off analysis. Lastly, [Abd+21] conducted a SLR
which reported 41 service identification approaches. The authors proposed a taxonomy
of such approaches and developed a multi-level classification scheme around them. The
authors also evaluated the scope of the SLR with industry-based practitioners.
Several publications, including [HW+18], [Bog+21], [BD19], [PJZ18], [Val+20], men-

tioned or discussed the quality characteristics relevant to MSA and hinted towards the
quality assurance of microservices systems. [HW+18] provided a general overview of de-
sign quality measurement in SOA and identified the most common quality attributes in
service-oriented design via a SLR. [Bog+21] investigated how industry-based practition-
ers observed evolvability assurance for microservices, including the tools, metrics and
patterns they apply, and the challenges they fear for the evolvability of their microser-
vices systems. The research method of this work included semi-structured interviews
with 17 microservices experts. Additionally, the authors performed a Grey Literature
Review (GLR) to analyse 295 online sources. [Val+20] worked on a multivocal literature
review for MSA design patterns where the authors categorised the patterns based on the
benefits they offer. In this work, the authors made use of the ISO/IEC 25010 QM to
evaluate the product quality of applications employing MSA. They also researched on
finding the quality attributes related to the discovered design patterns. Lastly, [BD19]
conducted a SLR of architectural approaches for the implementation of Continuous De-
livery (CD) and DevOps. The authors discovered 17 architectural characteristics that
are useful when adopting CD and DevOps. In addition, they identified 10 probable
hindrances in embracing CD and DevOps for current software systems.
These works indicate that research on MSA, involving design guidelines and qual-

ity assurance, is an ongoing effort. The work of this thesis differentiates from current
research in the sense that it consolidates and presents the existing design guidelines
around MSA in the form of a catalogue. In addition, our work uniquely contributes
to existing research by proposing a well-grounded classification scheme for the collected
design guidelines. We also adequately address quality, including quality characteristics,
in microservices applications and architectures by formulating a Quality Models which is
a novel contribution in itself. Finally, we cater to the research gap around determining
the relation of the collected design guidelines and the quality characteristics in existing
research.

8

4. Research Approach

This chapter presents the overall research approach that was adopted for the purpose of
this thesis. It also provides details of the individual research methods that were followed
for carrying out the thesis. We explain our research approach in a sequential manner
where we demonstrate how we worked in order to get to the results of the thesis.

4.1. Overall Approach

The state chart in Figure 4.1 presents the overall research process of the thesis, including
the individual steps which we undertook to execute our research. Each of the steps are
in correlation with the discussed research questions and serve as central methods around
which this thesis was framed.

Figure 4.1.: State Chart of the Overall Research Approach

As the first step, we perform a Systematic Literature Review with the primary purpose
of researching design guidelines associated with constructing meaningful MSA. This
method serves as the main research methodology adopted for the thesis. We provide
and discuss all the SLR related aspects such as the strategy used to search for the
information, the inclusion, exclusion and selection criteria meant to choose the relevant
information, and the procedures used to ensure the application of the mentioned criteria.
Details regarding this step and its respective actions and outcomes have been covered
meticulously in Section 4.2.

Next, we analyse the literature sources identified in the SLR in order to develop and
structure a catalogue of design guidelines used to build MSA. We provide and discuss the
methods used to extract and classify the relevant information. Details regarding this step
and its respective actions and outcomes have been discussed diligently in Section 4.3.
Having obtained sufficient information regarding research around MSA, we formulate

and propose a Quality Model tailored to microservices applications and architectures.
For this purpose, we identify quality characteristics which collectively describe the qual-
ity of microservices applications and architectures meaningfully. We provide and discuss
all relevant aspects such as the reference Quality Model used in this research, the sources
of the quality characteristics and the strategies used to extract and describe them, the

9

4. Research Approach

techniques used to build the Quality Model, and the evaluation method applied to vali-
date the QM. Details regarding this step and its respective actions and outcomes have
been covered thoroughly in Section 4.4.

With the knowledge of the design guidelines and the quality characteristics relevant to
MSA, we close our work by performing a mapping to identify which quality character-
istics of microservices systems are related to and affected by each of the existing design
guidelines. We provide and discuss the mapping related aspects such as the mapping
strategies used. Details regarding this step and its respective actions and outcomes have
been covered fully in Section 4.5.

4.2. Performing a Systematic Literature Review
4.2.1. SLR Method
In order to utilise a traceable method, we adopted the sophisticated SLR method pro-
posed by [Kee+07]. A Systematic Literature Review is a method to identify, evaluate,
and interpret all researches relevant to a specific research question or topic area [Kee+07].
This method is widely used for academic research in the software engineering domain.
This method was adopted to unify the procedure of performing literature research and to
deliver valuable results. [Kee+07] proposed a set of guidelines which helped in conduct-
ing the SLR. One of the aspects to evaluate theoretical work based on existing literature
is to provide a clear and reusable process, hence we were motivated to follow this par-
ticular method. Additionally, this method focuses on a specific overview of publications
on a given topic and allows for an in-depth analysis of the gathered material. It also fit
with our need to solve a particular issue and search for relevant and precise information.
When performing the SLR, the first step is to identify the need for a review. According
to [Kee+07], the need for a fully systematic literature review arises from the requirement
of researchers to summarise all existing information around a specific phenomenon in a
thorough, exhaustive and unbiased manner. This might be done in order to draw more
general conclusions about that phenomenon than is possible from individual studies, or
to undertake as a prelude to future research activities.
In our work, the research phenomenon was centered around the discussed research

questions for which a thorough and exhaustive SLR was not an essential requirement,
given the scope. Hence, we adjusted the original SLR method from [Kee+07] based on
our requirements. The adjustment included omitting the Study Quality Assessment and
Dissemination Strategy steps, as explained later in Section 4.2.9. We frame the SLR as
the main research method for building upon the research initiatives of this thesis.
We outlined the steps of the SLR process in the state chart shown in Figure 4.2. In

the SLR, we conceptualised the search criteria, applied it on selected databases, and
subsequently executed consecutive screening phases on the literature sources in order to
obtain the final SLR corpus.

10

4.2. Performing a Systematic Literature Review

Figure 4.2.: State Chart of the SLR Process

4.2.2. Inclusion Criteria
We were interested in researching the design guidelines around MSA, so we decided to
define search criteria that would be as specific as possible. Our focus was targeted to-
wards the best practices and the design principles of building MSA. We wanted to search
for them in academic literature, hence the main parts of the search criteria included the
terms best practice and design principle. Given the context in which we wanted to find
these terms, we decided to search for them in relation to microservice architecture and
microservice application. We considered all possible combinations of these search terms
in order to completely define the search criteria as described in Table 4.1 (where the
wild card operator ’*’ denotes searching for the lexically related terms).

11

4. Research Approach

Inclusion
Criteria

(I#)

Definition

I1 Publications containing the terms ”design*” and ”microservice*”, with
”best practice*” as keyword filter

I2 Publications containing the terms ”design*” and ”microservice*”, with
”design principle*” as keyword filter

I3 Publications containing the terms ”best practice*” and ”microservice*”
and ”architecture*”

I4 Publications containing the terms ”best practice*” and ”microservice*”
and ”application*”

I5 Publications containing the terms containing ”best practice*” and ”mi-
croservice*” but omitting ”architecture*” and ”application*”

I6 Publications containing the terms ”design principle*” and ”microser-
vice*” and ”architecture*”

I7 Publications containing the terms ”design principle*” and ”microser-
vice*” and ”application*”

I8 Publications containing the terms ”design principle*” and ”microser-
vice*” but omitting ”architecture*” and ”application*”

Table 4.1.: Search Criteria for the SLR

Each of the described search criteria helped us in forming its respective search string.
We coupled the search terms via AND, OR and NOT logical operators in order to compose
complete and valid search strings. From the search strings, we worked on coding the
search queries tailored to the querying rules of each of the scientific databases that we
considered in the SLR. We searched through the full-text and the meta-information
fields of the publications, unless otherwise explicitly stated in the search query. This
guarantees consistency and reproducibility of results. In the case of two publications
having the same title but different abstracts and full-texts, we included both such studies
in the SLR.
Although Microservice Design Patterns is a separate and extensive research area al-

together, we included publications which discussed architectural design patterns in our
work. We also included papers which discussed Microservice API Patterns. Addition-
ally, we included papers which elaborated strategies and practices for the migration of
software systems from monolithic architectures to MSA. Furthermore, we included pa-
pers which discussed architectural refactoring practices which, in essence, are inspired
from the design guidelines of MSA. We understand that MSA is a subset of the SOA
paradigm which could be considered as a more general implementation of a distributed
service architecture [Neu15]. Hence, we included papers which discussed the design
guidelines of SOA that were in common with MSA.
We encountered the situation of whether to include secondary studies which discussed

12

4.2. Performing a Systematic Literature Review

design guidelines around MSA as part of the SLR or not. In order to gain clarity on this
issue, we performed a pros-cons analysis keeping our research objectives in mind. We
discovered that, in most cases, including secondary studies in systematic reviews reduces
the likelihood of bias and serves as a more efficient pathway for identifying relevant
literature, apart from systematic searching [Kee+07]. Later when conducting the trial
searches (discussed in Section 4.2.5), we discovered that the identified secondary studies
were in direct relation with our research question so including them actually pushed
us in the right direction of what we were seeking to answer. Additionally, secondary
studies are known to provide a basis for background reviews in prior research [HW+18],
[BD19], [WKR21]. Since one of the objectives of the SLR was to identify existing design
guidelines of MSA, and this SLR would serve as a basis and background study for all
the research questions of the thesis, we considered the inclusion of secondary studies in
the SLR.

4.2.3. Selection Criteria
For the scientific databases which offered the possibility to restrict search results based
on the subject area, publication type, publication year, publication stage, and language,
we defined the values for these filters according to our requirements for the SLR. We
considered the default values for all other criteria that have not been explicitly mentioned
as they appear in the scientific databases themselves. We selected English-language
based publications completely published between January 2014 and April 2022. Table 4.2
enlists the restrictions applied when gathering the literature. The values are listed in no
particular order. We included sub-types of the selected article types, if any. The starting
year of the publication year range was determined by the year of the first microservices
study known in the literature.

Filter Value
Research Areas (Web of Science)
Publication Topics (IEEExplore)
Subject Areas (Science Direct, Scopus, Wiley Inter-
Science)

Computer Science
Software Engineering

Article Type
Document Type
Content Type (ACM Digital Library)

Conference Paper
Conference Proceedings
Research Article
Journal Paper

Publication Year Between 2014 and 2022
Publication Stage Final
Language English

Table 4.2.: Selection Criteria for the SLR

13

4. Research Approach

4.2.4. Exclusion Criteria
We excluded research papers possessing the criteria described in Table 4.3 from the SLR
as they provided widely varying results and transcended the intended scope of this SLR.

Exclusion
Criteria

(E#)

Definition

E1 Is not relevant to microservices architectures, applications or designs
in the computer science or software engineering fields

E2 Does not discuss best practices, design principles, design patterns or
quality characteristics of MSA

E3 Only discusses general characteristics and features of MSA
E4 Identifies design principles of DevOps-driven architectures
E5 Researches on anti-patterns and architectural design issues or smells

in microservices systems
E6 Provides modelling approaches for SOA, web services or mobile services

Table 4.3.: Exclusion Criteria for the SLR

We excluded publications which deviated from the point of view of design guidelines
around MSA. We discarded articles which only discussed the implementation cycle of a
microservices system solving a particular problem. For cases where different versions of
the same publication appeared across one or more databases, we included the most recent
version of the paper and discarded the prior ones. For cases where multiple instances of
the same publication appeared across different databases, we ignored the duplicate ones
so that only a single instance of the paper was included.
We realised that, in computer science research, the terms cloud native architectures

and Microservices Architectures are used interchangeably. In reality, MSA have been
around longer than cloud native computing. Moreover, in the realm of cloud native
architectures, microservices form one artifact among various others such as Continu-
ous Integration/Continuous Delivery (CI/CD), DevOps and containers. According to
[Kee+07], the inclusion and exclusion criteria should be based on the research question
at hand, which in our case is specifically centered around MSA. Thus, we excluded
papers on cloud native architectures from the SLR.
During our research, we came across publications which discussed the design principles

of RESTful services. The design of RESTful Application Programming Interfaces (APIs)
is a domain in itself and is only weakly connected and indirectly related to the domain
of MSA. Additionally, diving into this finer level of granularity is out of the scope of
this SLR. Thus, we excluded papers discussing the design principles of RESTful services
from the SLR.

14

4.2. Performing a Systematic Literature Review

4.2.5. Study Selection Process
We utilised an electronic search method, harnessing the search queries devised in Sec-
tion 4.2.2, through which we searched for design guidelines in the context of microservices
applications and architectures respectively within major online scientific databases. We
decided to use the databases proposed by [Kee+07] with the addition of Web of Science,
resulting in a total of 12 databases as presented in Table 4.4. Direct access to Inspec
was not available, however, indirect subscription through vendor platforms such as Web
of Science was possible.

Trial Searches

First, we performed multiple trial searches on the 12 databases listed in Table 4.4. The
trial searches were aimed at sharpening the search queries and assessing the volume of
potentially relevant studies. This increased the accuracy of the search results and allowed
to identify existing systematic reviews. The trial searches led us to exclude some of the
databases from the SLR. We rejected the databases that offered either limited filtering
possibilities, huge volumes of papers pertaining to irrelevant topics, or a very small
(negligible) amount of research papers. This screening activity removed SpringerLink,
CiteSeerX, IET Digital Library and Google Scholar from our scope of databases. Lastly,
we removed Ei Compendex as it was not accessible.

Database
(DB#)

Name Included
in SLR?

Date of
Access

Papers
Included
in SLR

DB1 Web of Science Yes 01.06.2022 7
DB2 IEEExplore Yes 01.06.2022 14
DB3 ACM Digital Li-

brary
Yes 01.06.2022 12

DB4 ScienceDirect Yes 01.06.2022 1
DB5 SpringerLink No 26.05.2022 -
DB6 Scopus Yes 01.06.2022 24
DB7 CiteSeerx No 26.05.2022 -
DB8 Wiley Inter-

Science
Yes 01.06.2022 4

DB9 Ei Compendex - - -
DB10 IET Digital Library No 26.05.2022 -
DB11 dblp Yes 01.06.2022 1
DB12 Google Scholar No 26.05.2022 -

Table 4.4.: Database and Literature Selection for the SLR

15

4. Research Approach

Refined Searches

Following the trial searches, we engaged in refined searches across the 7 scientific databases
that we eventually considered in the SLR (highlighted in bold in 4.4). Refined searching
included application of the selection criteria and the exclusion criteria onto the search
results in a systematic manner. This led to listing a total of 666 research papers right
after searching. Subsequently, we executed the first literature screening phase where
we discarded duplicate publications. This resulted in 249 papers after removing the
duplicates.
Taking inspiration from [Kee+07] and in order to decide upon the inclusion of specific

articles in our research based on our requirements and scope, we executed the second
literature screening phase where we reviewed the titles, abstracts and conclusions of
the 249 research articles for relevance. The relevance was centered around indications of
best practices, design patterns, and design principles of constructing MSA in the papers.
In this phase, we also removed inaccessible, unavailable or malicious literature sources.
This activity yielded a total of 86 papers while discarding 163 papers. Finally, we carried
out the third literature screening phase by cautiously reading through the full-text of the
86 publications and identifying concrete occurrences of best practices, design patterns,
and design principles of building MSA. We also verified whether the text potentially
answers the research question and whether it demonstrates clarity in the purpose of our
investigation. This screening led to a total of 63 papers while discarding 23 papers. The
evolution of the SLR through the described screening phases is visually represented in
Figure 4.3.

Figure 4.3.: Evolution of the SLR

16

4.2. Performing a Systematic Literature Review

4.2.6. SLR Corpus
The refined searches and the literature screenings yielded the SLR corpus containing a
total of 63 academic publications that were included in this SLR. All of our research
questions majorly benefited from the SLR corpus either directly or indirectly, thus it is an
essential artifact of the thesis. The information offered by the papers of the SLR corpus
was important in deriving the results of the thesis. Hence, we referred to it multiple
times throughout the course of the thesis. The meta-information of the SLR corpus
is available via GitLab1. The reference numbers, titles, and bibliographic references of
the papers of the SLR corpus are available in Tables 4.5, 4.6, 4.7, 4.8, 4.9. The stated
reference numbers were used to refer to the respective publications of the SLR corpus
throughout this thesis.

1https://git.rwth-aachen.de/faizan.zafar/master-thesis/-/tree/main/SLR

17

https://git.rwth-aachen.de/faizan.zafar/master-thesis/-/tree/main/SLR

4.
R

esearch
A

pproach

Reference
Number ([#])

Title Reference

[1] Performance Analysis of Microservice Design Patterns [AP19]
[2] Composition of heterogeneous web services: A systematic review [HS19]
[3] Design Quality Measurement for Service Oriented Software on Service

Computing System: a Systematic Literature Review
[HW+18]

[4] Architectural smells detected by tools: A catalogue proposal [AFT19]
[5] A Microservice Architecture for the Intranet of Things and Energy in Smart

Buildings: Research Paper
[Bao+16]

[6] Architecting Microservices: Practical Opportunities and Challenges [BNK20]
[7] Containerized Development and Microservices for Self-Driving Vehicles:

Experiences & Best Practices
[BNB17]

[8] Using microservices in educational applications of IT-company [Ber+17]
[9] Industry practices and challenges for the evolvability assurance of microser-

vices: An interview study and systematic grey literature review
[Bog+21]

[10] Designing software architecture to support continuous delivery and De-
vOps: A systematic literature review

[BD19]

[11] Freshening the Air in Microservices: Resolving Architectural Smells via
Refactoring

[BNS19]

[12] Microservices approach for the internet of things [BGT16]
[13] Towards a Methodology for creating Internet of Things (IoT) Applications

based on Microservices
[Cab+20]

Table 4.5.: SLR Corpus

18

4.2.
Perform

ing
a

System
atic

Literature
R

eview
Reference

Number ([#])
Title Reference

[14] A systematic gray literature review: The technologies and concerns of mi-
croservice application programming interfaces

[CZL21]

[15] Architectural Support for DevOps in a Neo-Metropolis BDaaS Platform [Che+15]
[16] Tapis API Development with Python: Best Practices in Scientific REST

API Implementation: Experience implementing a distributed Stream API
[Cle+20]

[17] Synergies of System-of-Systems and Microservices Architectures [CNZ16]
[18] Research on Architecting Microservices: Trends, Focus, and Potential for

Industrial Adoption
[DML17]

[19] Microservices: A performance tester’s dream or nightmare? [Eis+20]
[20] Evaluation of API Request Bundling and its Impact on Performance of

Microservice Architectures
[EZ21]

[21] Following Domain Driven Design principles for Microservices decomposi-
tion: is it enough?

[Far+21]

[22] Towards a Method for Monitoring the Coupling Evolution of Microservice-
Based Architectures

[FF20]

[23] An Open-Source Benchmark Suite for Microservices and Their Hardware-
Software Implications for Cloud & Edge Systems

[Gan+19]

[24] “Functional-First” Recommendations for Beneficial Microservices Migra-
tion and Integration Lessons Learned from an Industrial Experience

[GT19]

[25] Decision Guidance Models for Microservices: Service Discovery and Fault
Tolerance

[HWB17]

[26] Microservice transition and its granularity problem: A systematic mapping
study

[HBK20]

Table 4.6.: SLR Corpus (continued)

19

4.
R

esearch
A

pproach

Reference
Number ([#])

Title Reference

[27] Microservice design for container based multi-cloud deployment [Jam17]
[28] Straddling the crevasse: A review of microservice software architecture

foundations and recent advancements
[JC19]

[29] ToLambda‐Automatic Path to Serverless Architectures [Kap19]
[30] Migrating Legacy Software to Microservices Architecture [KM19]
[31] Data management in microservices: State of the practice, challenges, and

research directions
[Lai+21]

[32] Microservice Patterns for the Life Cycle of Industrial Edge Software [Li+18]
[33] Microservice Architectures for Advanced Driver Assistance Systems: A

Case-Study
[Lot+19]

[34] Interface Evolution Patterns: Balancing Compatibility and Extensibility
across Service Life Cycles

[Lüb+19]

[35] Actual Use of Architectural Patterns in Microservices-Based Open Source
Projects

[MA18]

[36] Semi-automatic Feedback for Improving Architecture Conformance to Mi-
croservice Patterns and Practices

[Nte+21]

[37] Assessing Architecture Conformance to Coupling-Related Patterns and
Practices in Microservices

[Nte+20]

[38] Supporting Architectural Decision Making on Data Management in Mi-
croservice Architectures

[Nte+19]

[39] A Method for Architectural Trade-off Analysis Based on Patterns: Evalu-
ating Microservices Structural Attributes

[Oli+20]

Table 4.7.: SLR Corpus (continued)

20

4.2.
Perform

ing
a

System
atic

Literature
R

eview
Reference

Number ([#])
Title Reference

[40] Architectural principles for cloud software [PJZ18]
[41] Security of Microservice Applications: A Practitioners’ Perspective on

Challenges and Best Practices
[Bil+22]

[42] Microns: Commands for Building Bubble Microservices [Ras18]
[43] Content Management System Architecture [Shi17]
[44] Dimensions of Software Configuration: On the Configuration Context in

Modern Software Development
[SRS20]

[45] Patterns on Deriving APIs and Their Endpoints from Domain Models [Sin+21]
[46] The �TOSCA toolchain: Mining, analyzing, and refactoring microservice-

based architectures
[Sol+21]

[47] Engineering Software for the Cloud: Messaging Systems and Logging [Sou+17]
[48] Microservices in agile software development: A workshop-based study into

issues, advantages, and disadvantages
[Tai+17]

[49] Patterns Related to Microservice Architecture: a Multivocal Literature
Review

[Val+20]

[50] MAMS: Multi-Agent MicroServices� [W C+19]
[51] Promises and challenges of microservices: an exploratory study [WKR21]
[52] Developing, deploying, and operating twelve-factor applications with

TOSCA
[Wur+17]

Table 4.8.: SLR Corpus (continued)

21

4.
R

esearch
A

pproach

Reference
Number ([#])

Title Reference

[53] Reflections on SOA and Microservices [XWQ16]
[54] Interface Responsibility Patterns: Processing Resources and Operation Re-

sponsibilities
[Zim+20]

[55] Migrating Web Applications from Monolithic Structure to Microservices
Architecture

[Ren+18]

[56] Applying Microservice Refactoring to Object-2riented Legacy System [ZZ21]
[57] Best Practices and Strategy for the Migration of Service-Oriented

Architecture-Based Applications to Microservices Architecture
[RS22]

[58] State of the Practice in Service Identification for SOAMigration in Industry [Abd+18]
[59] Pattern-based Multi-Cloud Architecture Migration [JPM17]
[60] Are we speaking the industry language? The practice and literature of

modernizing legacy systems with microservices
[Col+21]

[61] Monolithic to Microservices Migration Strategy in Public Safety Secretariat
of Mato Grosso

[Pre+21]

[62] Monoliths to microservices-Migration Problems and Challenges: A SMS [VF21]
[63] A taxonomy of service identification approaches for legacy software systems

modernization
[Abd+21]

Table 4.9.: SLR Corpus (continued)

22

4.3. Developing a Catalogue of Design Guidelines

4.2.7. Data Synthesis
We describe the data synthesis procedure in detail in Section 4.3, including how we
extracted the data from the SLR corpus and synthesised the extracted data. During the
extraction procedure, we identified the design guidelines, including best practices, design
patterns, and design principles, for constructing MSA. During the synthesis procedure,
we structured and categorised this information in the form of a catalogue.

4.2.8. Conflict of Interest
There were no conflicts of interest, nor secondary interests of the author of the thesis.
All opinions presented were that of the author alone, and not of any institution to which
they were affiliated.

4.2.9. Excluded Steps
As part of our SLR method, we omitted two steps from the sophisticated SLR method
proposed by [Kee+07].

Study Quality Assessment

The purpose of study quality assessment was to take into account the systematic error
of the papers, and their internal and external validity. Since the SLR method served as
a basis for exploring the multiple research avenues of the thesis, it was difficult to assess
the internal and external validity of the papers. Moreover, the research results of the
papers seemed to have no bias as the authors did not focus on altering their research
process between what they considered and what they presented.

Dissemination Strategy

As the SLR was a central method of the thesis, this work will be under the evaluation of
other researchers and practitioners at some point. However, to date we have not assessed
the SLR via a formal peer review due to time and resource constraints. The thesis itself
was examined by one supervisor holding a Masters degree and two professors at RWTH
Aachen University in order to grade the work of the thesis student who is the author of
this thesis. All of the research papers cited and referenced in this SLR were peer reviewed
as they were published in well-known scientific databases. The thesis document is made
publicly available to members of microservices communities in industry and academia.

4.3. Developing a Catalogue of Design Guidelines
After obtaining the SLR corpus, we performed an in-depth analysis on all of its included
papers. In this analysis, we focused on identifying and extracting the required data i.e.
the design guidelines, including best practices, design patterns, and design principles,

23

4. Research Approach

that are proposed and employed in industry and academia for constructing MSA. Subse-
quently, we structured this information as a collection of 239 design guidelines in total.
Figure 4.4 presents a state chart which outlines the steps involved in this process.

Figure 4.4.: State Chart displaying the steps performed in developing a catalogue of
design guidelines

Regarding the format of our collection, we were initially interested in utilising a pat-
tern language which could serve as a basis for explaining our work. We were inclined
towards employing well-known and established frameworks to organise the collected de-
sign guidelines, hence we referred to various notable sources for the same. However, we
realised that our diverse collection encompassed a varying mix of patterns, practices and
principles. Additionally, not all information that is required for common design pattern
templates was available at our disposal. As a result, we decided upon a tabular format
for our collection and referred to this artifact as a Guidelines Catalogue or catalogue
throughout the thesis. We present the catalogue later in Chapter 6.2.

4.3.1. Categorisation of the Guidelines Catalogue
We developed the catalogue iteratively, improving it with each iteration. Due to the com-
plex nature of the structure of the catalogue, we decided to classify the design guidelines
in order to retrieve and refer the required information as efficiently as possible. We
decided to utilise the core principles of the grounded theory methodology for deriving
categories for the design guidelines reported in the catalogue. Qualitative data analysis
in general, and the grounded theory methodology in particular, aims to add structure
to unstructured data. Such structure is introduced in stages and forms the basis of any
resulting frameworks, theories and explanations [SC98]. The grounded theory methodol-
ogy helped us in identifying key themes, factors and concepts across the catalogue. Due
to the qualitative nature of our research, the list of categories and dimensions that we
report on is not intended to be complete. These constructs only emerged from perform-
ing the coding procedures of the grounded theory methodology on the data we collected,
and represented homogeneous topics.
We followed three sequential stages: open coding, axial coding, and selective coding, as

outlined in Figure 4.5.

24

4.3. Developing a Catalogue of Design Guidelines

Figure 4.5.: The steps in the Grounded Theory Methodology for categorising the Guide-
lines Catalogue

First, we performed open coding which segments text into meaningful expressions
and describes them as concisely as possible. Further, relevant annotations and concepts
are then attached to these expressions [Mul14]. During open coding, we broke down
the collected guidelines based on their semantic grouping, emerging concepts, functional
domains, scope coverage, and known categories. Next, we performed axial coding which
is used to group several open codes under a broader abstract concept [Mul14]. During
axial coding, we explored and explained the relationships between the discovered clusters
as distinct categories. Finally, we performed selective coding where we connect all of
our discovered categories together around one or more core categories [GSS68]. During
selective coding, we identified the core categories, related previously created codes and
categories to the core, and explained them in terms of the core. Basically, we grouped
the identified categories into dimensions which represent high-level ideas that we found
in the collected data. We iteratively performed the coding procedures and reviewed them
internally. Following each review, any coding-related disagreements were discussed and
rectified.
In order to make the coding processes more structural, we utilised the concept discovery

and level of abstraction concepts provided by [MT86]. Concept discovery refers to the
process of converting raw data into abstract concepts that relate to the phenomenon that
is being studied. The idea is to create abstract concepts or categories and group relevant
sets of data under them [MT86]. The level of abstraction provides a structural approach
towards creating these concepts. The main aim is to create a concept abstract enough so
that each identified open code does not end up with its own unique concept. The other
criterion is to make sure that the concept is explicitly related to the phenomenon under
study [MT86]. For the purposes of our research, we did not fully adopt the grounded
theory methodology as our main objective was to formulate categories and dimensions
for the design guidelines, rather than establish a new theory. This led to the proposal
of a categorisation scheme which we present later in Chapter 6.1.

25

4. Research Approach

4.4. Formulating a Quality Model For Microservices
Architectures

After obtaining the Guidelines Catalogue, we analysed all of its design guidelines, along
with examining the SLR corpus. In these analyses, we focused on identifying and ex-
tracting the required data i.e. the quality characteristics which pertain to microservices
applications and architectures, and meaningfully express their quality. Considering these
characteristics and the ISO/IEC 25010 standard as a basis, we proposed a Quality Model
tailored to MSA. We evaluated this QM to produce a revised version as part of this thesis.
Figure 4.6 presents a state chart which outlines the steps involved in this process.

Figure 4.6.: State Chart displaying the steps performed in developing a Quality Model
for MSA

4.4.1. Important Terminologies
The overall quality of MSA is encompassed and explained by various quality character-
istics. In our research, we split quality characteristics into Quality Attributes (QAs) and
Quality Factors (QFs):

Definition 3. A Quality Attribute is a high-level quality characteristic that has been
recognised and explored as part of a standard Quality Model.

Definition 4. A Quality Factor is a more specific and granular quality characteristic
which pertains to quality in a certain context.

During our research, we observed that each QA is influenced by a range of QFs which,
in turn, informatively express the QA. The QFs which are related to a certain QA have
a contributing affect on it. For example, one of the factors explaining the well-known
maintainability attribute in MSA is the modifiability factor. The higher the degree of
modifiability, the higher the maintainability.

4.4.2. Selection of a Reference Quality Model
Several QMs exist in academia and industry. The leading QM for systems and software is
the ISO/IEC 25010 [ISO11]. It is part of the systems and software quality requirements
and evaluation (SQuaRE) ISO/IEC 25000 series. This series of standards is a frame-
work to specify and evaluate system and software quality. ISO/IEC 25010 evolved from
ISO/IEC 9126 which is considered a standard decomposition of quality characteristics
and suggests a small number of measures for measuring them [ISO01].
For assessing the different dimensions of quality traits and properties relevant to MSA

in terms of an established quality framework, we were inclined to use a meaningful QM

26

4.4. Formulating a Quality Model For Microservices Architectures

as a reference model. We decided that our reference QM should be able to determine
which quality characteristics would be taken into account when evaluating certain prop-
erties of a software system. Hence, we employed the Software Product Quality Model
defined in the ISO/IEC 25010 standard. The system and software product quality model
relates to static properties of the software and dynamic properties of the computer sys-
tem [ISO11]. It represents a normative perspective on a target entity and is usually
considered from the standpoint of developers. The Quality Model decomposes into eight
Quality Attributes: functional suitability, performance efficiency, compatibility, usabil-
ity, reliability, security, maintainability, and portability with 23 corresponding Quality
Factors, as shown in Figure 4.7.

Figure 4.7.: The ISO/IEC 25010 Software Product Quality Model

The ISO/IEC 25010 Quality Model provided us with a solid starting point for investi-
gating quality in MSA. We realised that this model, in its current form, is not sufficient
for describing the quality of MSA very precisely, as highlighted in Chapter 2.1. Hence,
we were inspired to pursue this research for deriving and proposing a particular QM for
MSA.

4.4.3. Extraction and Description of Quality Characteristics

As part of our research, we analysed the Guidelines Catalogue and the SLR corpus
with respect to which quality characteristics they were tackling. In these analyses, we
noticed that these artefacts encompassed some quality characteristics (both attributes
and factors) which have already been covered in the ISO/IEC 25010 Quality Model.
We also observed that these artefacts encompassed several novel quality characteristics
which are particularly relevant for MSA and have not been covered by the ISO/IEC
25010 QM. We considered these novel quality characteristics as Quality Factors on the
same level as the ISO/IEC Quality Factors. All such factors collectively describe the
quality of MSA to a great extent since they were derived from artefacts centered around
MSA. For example, evolvability is a novel QF, among several others, which influences
the maintainability attribute. Similarly, for services to be discoverable in a microservices
application, developers needs to improve the discoverability factor, resulting in a more
reliable architecture.
As a result of our analysis, we identified and extracted a total of 82 quality char-

27

4. Research Approach

acteristics. As the next step, we sharply described each of the quality characteristics
by proposing concrete and clear descriptions, so that our proposed Quality Model is as
holistic as possible and considered as a complete taxonomy. We report the results of the
extraction and description procedures later in Chapter 5.1.

4.4.4. Building the Model
Considering the complete ISO/IEC 25010 QM and the novel QFs as a basis, we vertically
extended the ISO/IEC 25010 QM by describing the novel Quality Factors in terms of the
Quality Attributes of the model. We adopted the Concept Discovery methodology from
[Mul14] for extending the model as our objective was to realise the association of the
novel QFs with the respect to the QAs of the model. Concept discovery is the process
of grouping similar incidents from the raw data under abstract codes or categories. In
our research, this translated to analysing the novel Quality Factors, and coding and
categorising them under the broad Quality Attributes. Given the scope of our research,
we adopted a one-to-one association scheme where each QF is considered to describe
only one QA of the ISO/IEC 25010 QM. We depict the structure of the resulting model
later in Chapter 5.1.
During our research, we discovered several novel quality characteristics that were not

available in the ISO/IEC 25010 QM. This implied that the ISO/IEC 25010 QM is more
of a universal and architecture-agnostic framework that does not differentiate in soft-
ware architecture patterns, and is applicable across a variety of software architectures.
Although we realised that the quality characteristics defined by our proposed QM are
not specific to MSA, we ended up with the implication that the extracted quality charac-
teristics are rather important for taking advantage of the MSA pattern than is the case
for other architecture patterns. Moreover, they seem to describe the quality in MSA to
a great degree. This proposition provides a strong basis for comparing MSA for which
we are inclined to use an architecture-specific QM rather than a universal one.

4.4.5. Evaluation of the Quality Model
We understand that a Quality Model is a conceptualisation where a system’s quality
is abstracted in a model. We also comprehend the reliance on such a model and its
significance in industry and academia. This led to the realisation that our proposed
model needed to be validated through detailed feedback from relevant stakeholders. For
this purpose, we were inclined towards adopting the evaluation approach. An evaluation
describes a judgement based on a specific set of criteria. It is essentially an activity
performed by the evaluator based on some predefined criteria. Hence, we labelled the
proposed Quality Model as a preliminary one and worked towards producing a revised
version as discussed later in Chapter 5.2.

28

4.5. Mapping Design Guidelines to Quality Characteristics

4.5. Mapping Design Guidelines to Quality Characteristics
After obtaining the revised Quality Model, we analysed all of its elements, along with
analysing the Guidelines Catalogue and the SLR corpus. In these analyses, we focused
on recognising certain information i.e. the respective quality characteristic(s), includ-
ing Quality Attributes and Quality Factors, which are related to the design guidelines
around MSA. The relation comprises an influence or affect of a design guideline on its
corresponding quality characteristic(s), irrespective of an improvement or deterioration.
Figure 4.8 presents a state chart which outlines the steps involved in this process.

Figure 4.8.: State Chart displaying the steps performed in mapping design guidelines to
quality characteristics

In the first step, we analysed the Guidelines Catalogue. We reviewed each design
guideline and revisited the literature sources of the SLR corpus in which a particular
guideline was referenced. From there, we identified the quality characteristic(s) that
were in relation to the design guideline under scrutiny. Next, we immediately checked
for the presence of our newly identified quality characteristic(s) in the revised QM, and
finally included them in the catalogue against the guideline. We repeated the procedure
for all the 239 guidelines that our Guidelines Catalogue encompassed.

For this mapping, we employed a one-to-many mapping scheme where each design
guideline mapped onto one or more quality characteristics which it affects. For the few
cases where a design guideline was not known to influence any quality characteristic,
we inspected the description and properties of that guideline, cited it against multiple
peer-reviewed publications outside of the SLR corpus, and discussed it internally. This
provided us with the knowledge and expertise to map such guidelines to the correspond-
ing quality characteristics which they influence.

In the following chapters, we present the results that were obtained from executing
the research approach of this thesis. Due to clarity purposes, we decided to present the
results in a different order as compared to how they are outlined in the current chap-
ter. In the very next chapter, we present the Quality Model, including the preliminary
results, the evaluation method, and the post-evaluation results. In the chapter follow-
ing, we present the structured catalogue of design guidelines, including the proposed
categorisation scheme and the mapping of the design guidelines to the related quality
characteristics.

29

5. A Quality Model for Microservices
Architectures

This chapter presents our contribution in the form of a Quality Model for MSA. We
formally introduce our preliminary results and discuss in detail how we evaluate them
as part of this thesis. We also elaborate the final post-evaluation results in this chapter.

5.1. Preliminary Quality Model
The resulting preliminary QM followed the same hierarchical structure as that of the
ISO/IEC 25010 QM shown in Chapter 4.4.2. Moreover, since we extended the model and
did not add or remove any of its attributes, the 8 Quality Attributes of the ISO/IEC
25010 QM remained unchanged in the proposed model and throughout our research.
The preliminary QM encompassed 74 Quality Factors, including (51/74) novel QFs and
(23/74) QFs which were the same as the existing QFs of the ISO/IEC 25010 QM. All
quality characteristics (attributes and factors) of the model were derived and explained
from the extraction and description procedures described in Chapter 4.4.3. The method
described in Chapter 4.4.4 yielded the structure of the Quality Model, as visualised in
Figure 5.1, with the novel Quality Factors marked in bold.

Figure 5.1.: Structure of the Preliminary Quality Model

Figure 5.2 visualises the ratio of the Quality Factors by their novelty type.

31

5. A Quality Model for Microservices Architectures

Figure 5.2.: Ratio of Quality Factors by Type

5.2. Evaluation of Preliminary Quality Model
As motivated in Chapter 4.4.5 and in order to appropriately determine the applicability
and validity of our proposed Quality Model in industry and academia, we decided to
evaluate our work as holistically as possible. We conducted semi-structured interviews
with 13 microservices experts from industry and academia. We presented the partici-
pants our findings and particularly inquired about their feedback on our results with the
help of an interview protocol. We collected and structured this feedback for further use
in the thesis. Figure 5.3 outlines the steps involved in the evaluation process.

Figure 5.3.: State Chart of the Evaluation Approach

5.2.1. Evaluation Objective
The evaluation was solely aimed at the complete preliminary Quality Model and we
intended to answer the following question with this evaluation:

• To what extent does the proposed Quality Model, including all its elements, ade-
quately describe the quality of Microservices Architectures?

We were mainly interested in assessing the validity of the quality characteristics of the
model in relation to MSA. We also intended to examine the rationality of the associations
between the Quality Factors and the Quality Attributes in the model. Additionally,
we aimed to evaluate our demonstrated understanding of the meaning of the quality

32

5.2. Evaluation of Preliminary Quality Model

characteristics based on the experience of microservices experts. We also aspired to
uncover missing information in the proposed descriptions of the quality characteristics.
Another goal of the evaluation was to assess the overall appropriateness of the proposed
Quality Model for industrial and academic settings.

5.2.2. Evaluation Method
We encountered the situation of selecting an appropriate method for the evaluation of
our work. We had to ensure that the selected method would do justice to evaluating
the QM, while adhering to the scope and time constraints of the thesis. We were mostly
divided between two methods. The first method was a survey which could target a wider
audience and gather a variety of information quickly, however, it would require expertise
and resources on survey preparation and could limit the scope of the responses. The
second method was an interview which could obtain detailed answers from a limited
number of interview participants and provide a basis for in-depth assessment, however,
it would consume substantial time and management resources.

Since our research was exploratory in nature and we aimed to collect as much open-
ended information as possible, we adopted an interview-based evaluation method which
harnessed the strengths and opportunities of individual semi-structured interviews. Such
interviews allow the researcher to understand the interviewees’ perspective in a deeper
manner and answer a wider range of questions [BC06], which further made it a preferable
evaluation approach for this thesis. The semi-structured approach offers the flexibility
to refocus questions, or prompt for more information, when an interesting or novel
topic emerged [BNK20]. This method included preparing a set of open-ended questions
for individual interviews to be conducted with stakeholders working with MSA such
as industry practitioners and academic researchers. The interview itself was meant to
be a guided discussion between the thesis student (the interviewer) and the respective
stakeholder (the participant), along with some integrated conversational aspects.

5.2.3. Interview Preparation
First, we identified the different stakeholder communities that actively contribute to
the microservices domain. We found the Microservices Community (MC) which is a
European-based international community interested in the microservices paradigm, the
Gesellschaft für Informatik e.V. (GI) which is a large Germany-based specialist society
for computer science, and public microservices forums on LinkedIn. Next, we determined
the different groups of stakeholders who would be interested in taking up an interview
in this space. We decided that industry professionals and academic researchers who
were part of the selected communities and possessed suitable and sufficient experiences
around microservices would be ideal candidates for such an interview. We did not set
any additional restrictions on the eligibility of the potential interview participants. We
reached out to members of the selected communities by broadcasting a formal invi-
tation community-wide. Alongside, we directly contacted microservices experts from
the listed communities as well as from our social circles via formal personalised invites.

33

5. A Quality Model for Microservices Architectures

These invitations served as the interview preamble that explained the interview process,
highlighted the relevant topics, and introduced the ethical considerations.
We decided to conduct one-on-one interview sessions with each of the participants

involved. In order to eliminate the constraints of physical presence and owing to Covid-
19 restrictions, we decided to conduct the interviews online via Zoom. Additionally,
we decided to record the interview sessions with the participants’ consent, so that the
recordings were preserved and could be viewed later for extracting information. Given
a limited time period, which was established to be 40 minutes, we decided to keep the
interview on a more general level, rather than a very granular one which was not feasible
in the limited duration. The preparatory information on the different aspects of the
evaluation interview is summarised in Table 5.1.

Aspect Information
Stakeholder Communities Microservices Community

Gesellschaft für Informatik e.V.
Forums on LinkedIn

Stakeholder Groups Industry Professionals
Academic Researchers

Format One-on-one
Time Limit 40 minutes per participant
Medium Online via Zoom

Table 5.1.: Preparatory Information for the Evaluation Interview

Given the breadth and depth of the proposed QM and our limited time constraint, it
was not possible for each participant to evaluate the complete QM in a single sitting.
Hence, we decided to segment the model and discuss one Quality Attribute (e.g. porta-
bility) and a few of its selected Quality Factors (e.g. adaptability, cloudability etc.) with
each participant. In this way, all segments of the model were evaluated by different
participants and the model was completely covered as part of the evaluation.
In order to support the participants in evaluating the Quality Model, we prepared a

slide deck. This slide deck outlined our research objectives, the premise of our research,
and the research outcomes i.e. the structure of the preliminary Quality Model and its
quality characteristics including their proposed descriptions. Since, we decided to split
the model and present only one QA and a few of its selected QFs to each participant,
we ended up with one slide deck per participant with the research objectives and the
premise being common in all, but the presented quality characteristics being different.
Additionally, we authored an interview protocol that helped us to scope and organise

the semi-structured interviews. We carefully designed the interview questions based on
the evaluation objectives defined earlier. The protocol also served as a template for
drafting the individual questions around our research outcomes. Since each participant
was expected to evaluate a subset of the complete QM, we framed the interview questions

34

5.2. Evaluation of Preliminary Quality Model

according to the quality characteristics which were presented to the participant, and
modified the questions accordingly. We structured the protocol in Table 5.2 taking the
attribute portability and its factor adaptability as an example. We grouped the protocol
in thematic sections, namely Section A which inquired on the participants’ demographic
information, and Section B which presented questions on the preliminary Quality Model
itself. For the protocol, we defined the Likert scale as 1 corresponding to Very Poor, 2
corresponding to Poor, 3 corresponding to Neutral, 4 corresponding to Acceptable, and
5 corresponding to Perfectly Acceptable.

Section A: Questions on Demographic Information
Full Name
Qualification
Current Role and Affiliation
Years of Experience

Question 1: How long have you been working with microservices applica-
tions or architectures? What benefits or advantages have you experienced
with such technologies?

Section B: Questions on Preliminary Quality Model
Premise 1: Ask Questions 2-5 for each of the presented Quality Factors.

Question 2: On a scale from 1 to 5, how would you assess adaptability as a
Quality Factor for MSA? Why?
Question 3: On a scale from 1 to 5, how would you assess adaptability as a
Quality Factor of the Quality Attribute portability? Why?
Question 4: Would you associate adaptability with any other Quality At-
tribute (from the proposed Quality Model or otherwise) for MSA? If so,
which one?
Question 5: On a scale from 1 to 5, how would you assess the proposed de-
scription of adaptability? If poor, why?

Premise 2: Ask Question 6 for only the presented Quality Attribute.

Question 6: Do you feel that we have missed any Quality Factors for the
quality attribute portability?
Question 7: On a scale from 1 to 5, how would you assess the overall appro-
priateness of the proposed Quality Model for MSA?

Table 5.2.: Interview Protocol for the Evaluation Interview

35

5. A Quality Model for Microservices Architectures

5.2.4. Interview Procedure
We started the interview with Section A of the protocol. We requested from the partic-
ipant their demographic information and also asked about their background and expe-
rience with microservices applications and architectures. Next, we presented them their
individual slide deck so that they get familiarised with our work. From there, we moved
on to Section B of the protocol. We asked Questions 2 to 5 for each of the Quality
Factors that were presented earlier to the participant. Next, we asked Question 6 which
concerned the completeness of the Quality Attribute under discussion. Finally, our last
question focused on the appropriateness of the Quality Models in a general sense.
During the interview, we engaged in Note taking which refers to the activity of making

concise and relatable notes while the interview is being conducted [Mul14]. These quick
notes supported us in asking for more detailed insights with regards to the concurrent
response and feedback presented by the participant.

5.2.5. Participants’ Demographic Information
Our 13 interview participants comprised knowledgeable professionals in the microservices
domain, either scientifically or through experience gathered in the industry. This ensured
high quality of the feedback obtained when evaluating the Quality Model. We collected
the participants’ demographic information in Tables 5.3, 5.4, particularly the aspects
which we considered helpful in determining their credibility for assessing the QM.

36

5.2.
Evaluation

ofPrelim
inary

Q
uality

M
odel

Participant
(P#)

Qualification Current Role Organization
Size

Years of
MSA Ex-
perience

Field Expertise

P1 PhD Computer
Science

Research Asso-
ciate

Large 6 Academia Research

P2 PhD Informatics
Engineering

Professor Large 6 Academia Research

P3 M.Sc. Computer
Science

Software Engineer Large 5 Industry Software
Architec-
ture

P4 BS Information
Technology

Senior Data Engi-
neer

Large 4 Industry Data Archi-
tecture

P5 B.Sc. Computer
Science

Masters Student Large 1 Academia Research

P6 PhD Computer
Science

Researcher / Post-
doc

Large 6 Academia Research

P7 M.Sc. Services
Computing

Research Asso-
ciate / Lecturer

Large 4 Academia Research

P8 M.Sc. Business In-
formatics

Research Asso-
ciate

Large 4 Academia Research

P9 B.Sc. Computer
Science

Senior Engineer-
ing Manager

Large 6 Industry Software
Architec-
ture

Table 5.3.: Participants for the Evaluation Interview

37

5.
A

Q
uality

M
odelfor

M
icroservices

A
rchitectures

Participant
(P#)

Qualification Current Role Organization
Size

Years of
MSA Ex-
perience

Field Expertise

P10 B.Sc. Computer
Science

Software Engineer Medium 1 Industry DevOps

P11 B.Sc. Computer
Science

Software Engineer Large 5 Industry Software
Architec-
ture

P12 B.Sc. Electron-
ics and Communi-
cations Engineer-
ing

Advanced CI/CD
DevOps Engineer

Medium 3 Industry DevOps

P13 M.Sc. Computer
Science

Principal Archi-
tect

Small 5 Industry Software
Architec-
ture

Table 5.4.: Participants for the Evaluation Interview (continued)

38

5.2. Evaluation of Preliminary Quality Model

The majority i.e. (10/13) participants were affiliated with large scale organisations
harbouring more than 500 employees. (2/13) participants were affiliated with medium
scale organisations harbouring 300 to 500 employees. Lastly, (1/13) participant was
affiliated with a small scale organisation harbouring less than 100 employees. Figure 5.4
visualises the number of participants by organisation size.

Figure 5.4.: Interview Participants by Organisation Size

Most of our interview participants were substantially well-versed with MSA. The ma-
jority i.e. (4/13) participants possessed 6 years of experience with MSA. (3/13) par-
ticipants possessed 5 years of experience with MSA. (3/13) participants possessed 4
years of experience with MSA. (1/13) participant possessed 3 years of experience with
MSA. Lastly, (2/13) participants possessed 1 year of experience with MSA. Figure 5.5
visualises the number of participants by years of experience with MSA.

Figure 5.5.: Interview Participants by Years of MSA Experience

39

5. A Quality Model for Microservices Architectures

Out of the 13 interview participants, (7/13) belonged to industry while (6/13) belonged
to academia, thus ensuring a considerably heterogeneous sample for the purposes of our
evaluation. Figure 5.6 visualises the number of participants by field.

Figure 5.6.: Interview Participants by Field

The interview participants possessed different domain expertise within MSA. (6/13)
participants possessed expertise in academic research. (4/13) participants possessed
expertise in software architectures. (2/13) participants possessed expertise in DevOps.
Lastly, (1/13) participant possessed expertise in data architectures. Figure 5.7 visualises
the number of participants by expertise.

Figure 5.7.: Interview Participants by Expertise

40

5.2. Evaluation of Preliminary Quality Model

5.2.6. Feedback Document
With the interview recordings of the (11/13) participants who agreed to it at our disposal,
we engaged in Note writing which is the process of writing detailed notes from the
interview recordings no later than a day after the interview has been conducted [Mul14].
We transcribed the answers to the posed questions in a systematic manner such that the
transcription followed the same format in which the interview questions were structured.
This led to the creation of the feedback document which served as the main evaluation
artifact of the thesis and is available via GitLab1. The evaluation method was structured
in such a way that we did not encounter conflicting opinions among the researchers and
practitioners since each microservices professional assessed a distinct segment of the QM.
From the feedback document, we analysed all responses to Question 7, uncovering that

(11/13) participants found the QM acceptable for their use cases. (1/13) participant
found it perfectly acceptable in all aspects. Lastly, (1/13) participant remained neutral
towards it. This strengthened our position in putting forward the QM as a research
contribution in the right direction with room for improvements in its structure and
descriptions. Figure 5.8 visualises the responses of Question 7 of the interview.

Figure 5.8.: Overall Appropriateness of the Preliminary Quality Model

1https://git.rwth-aachen.de/faizan.zafar/master-thesis/-/tree/main/Evaluation

41

https://git.rwth-aachen.de/faizan.zafar/master-thesis/-/tree/main/Evaluation

5. A Quality Model for Microservices Architectures

5.3. Revision of Preliminary Quality Model
The evaluation feedback obtained from MSA experts allowed us to identify the impor-
tant adjustments to consider in the QM. Hence, we revisited our preliminary QM and
integrated the collected feedback into its structure as well as into the descriptions of its
elements. This revision was meant to develop a simpler and better Quality Model than
before as it included the opinions of seasoned researchers and practitioners.
After examining the feedback document, we proposed some modifications to the pre-

liminary QM. We revised the QM in three sequential stages: the addition and removal of
Quality Factors, changes in the positions of Quality Factors, and changes in the wordings
of the proposed descriptions of the Quality Factors.
In the first stage, we added 2 and removed 14 Quality Factors in the structure of

the QM. The descriptions of the 14 discarded QFs are available in Appendix A.1, with
the novel Quality Factors marked in bold. Besides this, we marked 4 Quality Factors
which were not considered appropriate at their current positions in the QM. Figure 5.9
visualises the execution of the first stage. The factors which were appended to the model
are highlighted in green. The factors which were removed from the model are highlighted
in red. The factors which were not considered appropriate at their current positions in
the model are highlighted in yellow.

Figure 5.9.: Revision of the Preliminary Quality Model - First Stage

In the second stage, we changed the positions of the 4 Quality Factors which were
not considered appropriate at their current positions in the model. A change in position
meant that the QF under consideration was now being associated with another Quality
Attribute than before as it describes the newly associated QA in a better way. Figure 5.10
visualises the execution of the second stage. The factors which were migrated to their
updated positions in the model are highlighted in yellow.

42

5.4. Revised Quality Model

Figure 5.10.: Revision of the Preliminary Quality Model - Second Stage

Finally, in the third stage, we edited and proofread the proposed descriptions of the
Quality Factors based on the collected feedback with the objective of having as polished,
sharp and relevant descriptions as possible.

5.4. Revised Quality Model
After the revision procedure, we finally obtained the revised Quality Model that we
proposed as a novel contribution of the thesis. The revised QM followed the same hi-
erarchical structure as that of the preliminary model shown in Section 5.1. Moreover,
since we did not add or remove any of its attributes, the 8 Quality Attributes of the
preliminary model remained unchanged in the revised model. The revised QM encom-
passed 62 Quality Factors, including (41/62) novel Quality Factors and (21/62) Quality
Factors which were the same as the existing QFs of the original ISO/IEC 25010 QM.
The structure of the model is visualised in Figure 5.11, with the novel Quality Factors
marked in bold.

43

5. A Quality Model for Microservices Architectures

Figure 5.11.: A Quality Model for MSA

Figure 5.12 visualises the ratio of the Quality Factors by their novelty type.

Figure 5.12.: Ratio of Quality Factors by Type

The descriptions of the Quality Attributes of the revised QM are available in Ta-
bles 5.5, 5.6.
The descriptions of the Quality Factors of the revised QM can be found in Tables 5.7,

5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, with the novel Quality Factors marked in
bold. These tables should be read from left to right. For example, the first row in
Table 5.7 presents the Quality Factor ”Cohesion” which explains the Quality Attribute
”Compatibility”. Next, we can find the description of the ”Cohesion” factor. Lastly, we
see the reference numbers of the literature source(s) of the SLR corpus which mention
or discuss this factor. The method explained to read this row can be applied to all rows
of this and subsequent tables.

44

5.4.
R

evised
Q

uality
M

odel
Quality

Attribute
Description Literature Source(s)

Compatibility Degree to which a microservices system exchanges in-
formation with other systems (or components) and per-
forms required functions while sharing the same envi-
ronment.

[34],[49],[51],[54],[5],[7],
[14]

Functional
Suitability

Degree to which a microservices system provides services
that meet the stated and implied needs when used under
specified conditions.

[10],[26],[28],[42],[49],[59]

Maintainability Degree of effectiveness and efficiency with which a mi-
croservices system can be modified according to changes
in its environment and requirements.

[25],[26],[28],[32],[33],[34],
[35],[42],[43],[45],[49],[50],
[51],[58],[60],[63],[5],[6],
[9],[12],[16],[21],[22],
[46],[52]

Performance
Efficiency

The performance relative to the amount of resources
used in a microservices system under stated conditions.

[10],[15],[18],[23],[24],[25],
[26],[28],[30],[31],[32],[34],
[35],[37],[38],[39],[40],[41],
[42],[43],[49],[50],[51],[54],
[55],[57],[58],[59],[60],[62],
[6],[7],[12],[14],[19],[20],
[29],[44],[46],[53],[61]

Table 5.5.: Quality Attributes with Descriptions

45

5.
A

Q
uality

M
odelfor

M
icroservices

A
rchitectures

Quality
Attribute

Description Literature Source(s)

Portability Degree of effectiveness and efficiency with which a mi-
croservices system can be moved from one environment
to another with minimal modifications.

[18],[27],[28],[32],[40],[49],
[59],[62],[13],[16],[52]

Reliability Degree to which a microservice operates independently
for a specified period of time, regardless of whether other
microservices in the system crash, or are attacked or
destroyed.

[17],[26],[27],[28],[30],[32],
[33],[35],[37],[38],[41],[42],
[43],[49],[51],[54],[58],[59],
[62],[1],[2],[5],[9],[14],[20],
[29],[44],[53]

Security Degree to which a microservices system guarantees data
protection and resource access for stakeholders according
to their type and level of authorization.

[10],[15],[18],[24],[28],[32],
[33],[34],[35],[38],[39],[40],
[41],[42],[43],[45],[47],[49],
[50],[51],[54],[57],[59],[62],
[5],[6],[9],[14],[44],[53]

Usability Degree to which a microservices system is useful for spec-
ified users to achieve specified goals with effectiveness,
efficiency and satisfaction, in a specified context of use.

[34],[43],[45],[49],[59],[11]

Table 5.6.: Quality Attributes with Descriptions (continued)

46

5.4.
R

evised
Q

uality
M

odel
Quality

Attribute
Quality
Factor

Description of Quality Factor Literature Source(s)

Compatibility Cohesion Measure of the strength of the relationships among the
programming entities implementing a microservice and
the functionality provided by the microservice.

[3],[17],[26],[28],[31],[37],
[39],[40],[51],[54],[55],[58],
[60],[62],[63],[9],[53]

Compatibility Composability Degree to which microservices are able to be combined
with other microservices to form composite services,
without high coupling on the interface layer.

[3],[10],[40],[42],[58],[63]

Compatibility Coupling Measure of the power of interactions and dependencies
between microservices in a microservices system.

[3],[10],[17],[18],[26],[27],
[28],[31],[33],[34],[35],[37],
[38],[39],[40],[42],[47],[49],
[50],[51],[54],[55],[57],[58],
[60],[62],[63],[2],[4],[5],[9],
[12],[19],[22],[36],[53]

Compatibility Heterogeneity Degree of diversity in programming languages and de-
velopment frameworks in a microservices system.

[17],[23],[26],[39],[40],[51],
[1],[2],[5],[9],[12],[22],[44]

Compatibility Interoperability Degree to which a microservice can communicate with
other microservices in a microservices system, such that
it supports the inclusion of microservices from other sys-
tems, including any exchange of information.

[15],[24],[25],[31],[34],[43],
[49],[54],[58],[63],[2],[5],
[8],[12],[48],[53]

Compatibility TransactionalityDegree to which a distributed transaction can be
achieved across different microservices in a microservices
system.

[34],[54],[62]

Table 5.7.: Quality Factors with Descriptions

47

5.
A

Q
uality

M
odelfor

M
icroservices

A
rchitectures

Quality
Attribute

Quality
Factor

Description of Quality Factor Literature Source(s)

Functional
Suitability

Functional ap-
propriateness

Degree to which microservices, including interactions be-
tween the services, are collectively focused on capturing
the complete set of business goals and requirements in
order to implement the required features of a microser-
vices system.

[43],[8]

Functional
Suitability

Functional com-
pleteness

Degree to which the set of functions encapsulates a well-
defined set of functionality that covers the specified task
and user objective of a single microservice in a microser-
vices system.

[15],[17],[23],[24],[25],[26],
[27],[28],[30],[31],[32],[33],
[34],[43],[50],[51],[58],
[60],[62],[63],[2],[9],[14],
[16],[19],[21],[52],[53],[56]

Functional
Suitability

Functional cor-
rectness

Degree to which a microservices system delivers results
with the needed degree of accuracy.

[31],[32],[7],[9]

Functional
Suitability

Granularity The number of fine-grained functionalities encapsulated
in a single microservice.

[3],[24],[26],[30],[38],[39],
[40],[43],[49],[51],[54],[58],
[60],[62],[63],[9],[11],[19],
[29],[46],[53],[56],[61]

Maintainability Analysability Degree to which it is possible to be completely certain
about the bounded context for which a microservice is
responsible for by reading and understanding its code-
base and documentation.

[9]

Table 5.8.: Quality Factors with Descriptions (continued)

48

5.4.
R

evised
Q

uality
M

odel
Quality

Attribute
Quality
Factor

Description of Quality Factor Literature Source(s)

Maintainability Asynchronicity Degree to which microservices are able to publish and
consume their messages to and from the communication
channel, in a queue-based environment.

[24],[37],[47]

Maintainability Changeability Degree to which making enhancements in a microser-
vices system is generally supported.

[26]

Maintainability Configurability Degree to which system modifications are easily ac-
commodated in a microservices system, with minimal
changes to its existing configuration.

[8]

Maintainability Consistency Degree to which the changes made to the data in one
microservice are available to all other microservices in a
microservices system.

[27],[31],[38],[40],[42],
[54],[62],[9],[53]

Maintainability Deployability Degree to which microservices can be deployed indepen-
dently without downtime, and without restarting the en-
tire microservices system.

[10],[15],[26],[27],[28],[30],
[33],[57],[60],[7],[11],[12]
,[46]

Maintainability Evolvability Degree of effectiveness and efficiency with which a mi-
croservice can evolve without hindering the evolution of
other microservices in a microservices system.

[17],[24],[26],[30],[34],[35],
[42],[45],[54],[60],[5],[9]
,[12]

Maintainability Extensibility Degree of effectiveness and efficiency with which a mi-
croservices system can be extended in additional use
cases or resources.

[34],[42],[43],[49],[50],
[55],[59]

Table 5.9.: Quality Factors with Descriptions (continued)

49

5.
A

Q
uality

M
odelfor

M
icroservices

A
rchitectures

Quality
Attribute

Quality
Factor

Description of Quality Factor Literature Source(s)

Maintainability Flexibility Degree to which it is possible to build a microservices
system for distributed environments including hybrid
cloud.

[15],[18],[27],[28],[30],[31],
[32],[35],[39],[40],[41],[43],
[47],[49],[51],[54],[58],[59],
[60],[1],[6],[9],[16],[19],[22]
,[52]

Maintainability Manageability Degree of effectiveness and efficiency with which the af-
fairs of a microservices system can be governed auto-
matically.

[27],[34],[43],[54],[59]

Maintainability Modifiability Measure of the speed at which a new change can be
pushed to a microservice, without degrading quality.

[10],[15],[30],[34],[37],[45]

Maintainability Modularity Degree to which a microservices system is composed of
components, such that a change to one component has
minimal impact on other components.

[10],[17],[23],[26],[28],[32],
[33],[40],[4],[8],[9],[13]

Maintainability Observability Degree of effectiveness and efficiency with which the in-
ternal states of a microservices system can be inferred
from its external outputs.

[35],[39],[45],[11]

Maintainability Stability Degree to which a microservices system can avoid the
unexpected effects of technical or behavioural modifica-
tions.

[34],[37],[45],[51],[57],
[4],[5],[9]

Maintainability Testability Degree to which it is possible to establish test criteria
and perform tests in a microservices system.

[10],[15],[18],[28],[32],
[33],[39],[49],[58],[60],[12]

Table 5.10.: Quality Factors with Descriptions (continued)

50

5.4.
R

evised
Q

uality
M

odel
Quality

Attribute
Quality
Factor

Description of Quality Factor Literature Source(s)

Maintainability Traceability Degree to which it is possible to locate where in the mi-
croservices system an error originated, and how it trav-
elled through several microservices.

[10],[41],[62]

Maintainability Upgradability Degree to which a microservices system can be improved
in technical or behavioural aspects.

[17],[40],[43],[8]

Performance
Efficiency

Atomicity Degree to which each microservice in a microservices sys-
tem is treated as a single unit and has a single respon-
sibility.

[24],[31],[38],[39],[55]

Performance
Efficiency

Capacity Degree to which the maximum limit of a parameter rel-
evant to a microservices system meets the specified re-
quirements.

[28],[32],[54],[55],[59],[53]

Performance
Efficiency

Dynamicity Degree to which the physical or logical structure of a
microservices system evolves with time.

[26],[28],[31],[47],[2]

Performance
Efficiency

Elasticity Degree to which resources can be increased or decreased
automatically or dynamically in a microservices system.

[18],[23],[28],[30],[40],[50],
[54],[59],[62],[8],[19],[48]

Performance
Efficiency

Quality-of-
service

Measure of the communication requirements of a mi-
croservices system, usually expressed in terms of band-
width, latency or data transfer rate.

[23],[26],[28],[32],[34],[47],
[57],[58],[59],[5],[7]

Performance
Efficiency

Resource Uti-
lization

Degree to which the amount and type of resources used
by a microservices system meets the specified require-
ments.

[19],[44]

Table 5.11.: Quality Factors with Descriptions (continued)

51

5.
A

Q
uality

M
odelfor

M
icroservices

A
rchitectures

Quality
Attribute

Quality
Factor

Description of Quality Factor Literature Source(s)

Performance
Efficiency

Scalability Degree to which new instances of microservices can be
provisioned and deployed in a microservices system,
while preventing the system from slowing down once the
load gets higher.

[10],[17],[18],[23],[25],[26],
[27],[28],[30],[31],[32],[33],
[34],[35],[37],[38],[39],[40],
[41],[42],[43],[45],[47],[49],
[50],[51],[54],[55],[57],[59],
[60],[62],[1],[6],[7],[8],[12],
[16],[19],[21],[22],[29],[48],
[52],[53],[61]

Portability Adaptability Degree to which a microservices system can be dynami-
cally adapted for different environments.

[26],[40],[58],[46]

Portability Cloudability Degree to which the deployment characteristics of a mi-
croservices system make it a great match for the elastic-
ity of the cloud.

[30]

Portability ExchangeabilityDegree to which a microservices system can be built in-
dependent of any cloud provider-specific API, domain-
specific language, or deployment technology.

[52]

Portability Reproducibility Degree to which the behaviour of a microservices system
can be achieved again in the same or different environ-
ments.

[47],[54],[16]

Reliability Availability Degree to which a microservices system is operational
and usable when accessed by an authorized entity.

[10],[15],[17],[23],[25],[26],
[27],[28],[31],[32],[34],[35],
[38],[40],[41],[43],[47],[51],
[54],[58],[59],[60],[62],[1],
[5],[13],[20],[29],[44],[61]

Table 5.12.: Quality Factors with Descriptions (continued)

52

5.4.
R

evised
Q

uality
M

odel
Quality

Attribute
Quality
Factor

Description of Quality Factor Literature Source(s)

Reliability Discoverability Degree to which a microservice is able to locate other
microservices or microservices instances currently run-
ning in the microservices system.

[28],[42]

Reliability Fault Tolerance Degree to which the presence of faults in one microser-
vice does not break the operation of the entire microser-
vices system.

[18],[25],[26],[28],[30],
[31],[33],[39],[49],[51],[55],
[62],[6],[9],[29]

Reliability Loggability Degree to which the activities occurring in a microser-
vices system can be recorded in a log.

[10]

Reliability Longevity Degree to which a microservice continues to fulfill its
purpose for a certain time span or if a defined set of con-
ditions holds, without requiring excessive maintenance.

[34],[42]

Reliability Monitorability Degree to which the behavioural aspects (information,
requests and errors) and performance aspects (system
behaviour, CPU usage and response times) of a microser-
vices system can be followed, when they travel through
several microservices.

[10]

Reliability Recoverability Degree to which all data and microservices can be re-
stored to a certain state in operation, from an event
which has interrupted or taken down the microservices
system.

[62],[6]

Reliability Resilience Degree to which a microservices system can continue an
acceptable level of operations in case of system or service
failures.

[26],[33],[35],[39],[41],[47],
[54],[59],[62],[8],[9],[13],
[16],[29]

Table 5.13.: Quality Factors with Descriptions (continued)

53

5.
A

Q
uality

M
odelfor

M
icroservices

A
rchitectures

Quality
Attribute

Quality
Factor

Description of Quality Factor Literature Source(s)

Reliability Robustness Degree to which a microservices system can tolerate
entire microservices’ failures, including communication
failures, such that the failures don’t propagate through
the system.

[26],[28],[33],[40],[43],
[51],[9]

Reliability Verbosity Degree to which all possibly relevant information can
be preemptively captured in a microservices system for
tracing or debugging.

[47]

Security Accountability Degree to which all actions performed by an entity
(or resource) in a microservices system can be traced
uniquely to that entity (or resource).

[2],[9]

Security Auditability Degree to which a microservices system keeps sufficient
records to support specified financial or legal audits.

[18],[24],[45],[54]

Security Authenticity Degree to which the identity of an entity (or resource)
in a microservices system can be proved as the identity
it claims.

[8]

Security Confidentiality Degree to which a microservices system ensures that cer-
tain data is accessible only to authorized stakeholders.

[28],[41]

Security Integrity Degree to which consistency across data and resources
can be maintained in a microservices system, in the event
of a security breach.

[28],[31],[32],[38],[41],[51],
[55],[59],[22],[53]

Security Susceptibility Degree to which a microservices system is exposed to the
possibility of security incidents.

[41]

Security Visibility Degree to which all events that compromise business op-
erations and information security in a microservices sys-
tem can be closely monitored.

[41],[61]

Table 5.14.: Quality Factors with Descriptions (continued)

54

5.4.
R

evised
Q

uality
M

odel
Quality

Attribute
Quality
Factor

Description of Quality Factor Literature Source(s)

Usability Accessibility Degree to which a microservices system is convenient to
use by users having diversity in capabilities and charac-
teristics.

[43],[59],[29],[46]

Usability Complexity Degree of effort that is required to realise and implement
the technical and behavioural aspects of a microservices
system.

[3],[10],[17],[18],[23],[24],
[25],[26],[27],[28],[30],[31],
[33],[35],[37],[38],[39],[41],
[42],[45],[47],[49],[50],[51],
[54],[57],[58],[59],[60],[62],
[5],[6],[8],[12],[20],[21],
[22],[36],[44],[48],[52],[53]

Usability Consumability Degree to which the artefacts of a microservices system
are perceivable by users having diverse backgrounds.

[34]

Usability Explainability Degree to which a microservices system is able to de-
scribe its own structure as well as behaviour.

[58],[44]

Usability Operability Degree to which a microservices system is easy to run
and control.

[8]

Usability Reusability Degree to which the functionality or source code of com-
ponents in a microservices system can be reused in the
future.

[3],[10],[25],[26],[28],[32],
[35],[37],[39],[42],[43],[58],
[59],[60],[62],[63],[1],[5],
[9],[16]

Usability Understand-
ability

Degree to which a microservices system enables its users
to comprehend its suitability for particular tasks and
specified context of use.

[28],[32],[45],[51],[44]

Table 5.15.: Quality Factors with Descriptions (continued)

55

6. A Catalogue of Design Guidelines for
Microservices Architectures

This chapter presents our contribution in the form of a structured catalogue of design
guidelines that are centered around constructing MSA. We formally introduce our results
and analyse them in this chapter.

6.1. Catalogue Categorisation Scheme
The research approach described in Chapter 4.3.1 yielded a three-dimensional categorisa-
tion scheme for the Guidelines Catalogue, which introduced the dimensions Type, Scope
and Design:

Definition 5. Type represents the semantic group of the design guideline.

Definition 6. Scope describes the area which the design guideline is responsible for.

Definition 7. Design reports the type of activity that the design guideline undertakes
with respect to designing the system architecture.

The defined dimensions encompassed a total of 23 categories which are outlined in
Table 6.1.

57

6. A Catalogue of Design Guidelines for Microservices Architectures

Type Scope Design
Design Pattern Architecture Migration
Design Principle Code Management Universal
Best Practice Communication
Context-sensitive Data Consistency
Best Practice Data Management

Data Persistence
Decomposition
Deployment
Development
Distribution
Entry Point
Fault Tolerance
Infrastructure
Monitoring
Security
Supplementals
Testing

Table 6.1.: Three-Dimensional Categorisation Scheme

First, the Type dimension encompasses the Design Pattern, Design Principle, Best
Practice, and Context-sensitive Best Practice categories:

Definition 8. A Design Pattern explains the solution to a well-defined problem, in such
a way that we are able to use the solution repeatedly. We used nouns as a naming
schema for the design patterns in the catalogue (e.g. API Gateway). This suggests that
the pattern is an entity to be used, employed or observed.

Definition 9. A Design Principle constitutes a set of prescribed considerations that
support consistency in design decisions. Design principles can be realised in a variety
of ways, given the system constraints, implementation language, existing framework or
component support, and cost/benefit trade-offs. We used a mix of nouns and verbs as a
naming schema for the design principles in the catalogue, depending on the context (e.g.
Single Responsibility Principle, Evolutionary design etc.)

Definition 10. A Best Practice serves as a means for appropriate adherence to es-
tablished rules, along with detecting deviations from their adherence. It is meant to be
used by any means and it always holds. We used imperatives as a naming schema for
the best practices in the catalogue in order to portray them as concrete directives to be
followed (e.g. Avoid direct synchronous calls between services). However, in some cases,
a best practice takes advantage of a design pattern and its naming convention implies
what should be practically done with the design pattern. As an example, we propose that

58

6.1. Catalogue Categorisation Scheme

the Asynchronous messaging pattern leads to application of the Avoid direct synchronous
calls between services practice.

Definition 11. A Context-sensitive Best Practice is a best practice that only proves to
be optimal in certain practical contexts or complex situations. It is also highly dependent
on the specific use case which the microservices system is responsible for, hence it should
not necessarily always be used. We chose to use imperatives as a naming schema for the
context-sensitive best practices in the catalogue and composed them as advice (e.g. Limit
language diversity).

The Context-sensitive Best Practice category is a specialisation of Best Practice due to
pragmatic reasons and dependency on the use case. For example, if the software architect
wishes to actively control all elements and interactions in a microservices system, they
ought to adopt the Orchestration pattern. While this pattern promotes tight coupling, it
is the current defacto standard in microservices systems and not using it might come as
a surprise to developers working with MSA. On the other hand, if the software architect
wants to establish a routine that microservices follow without requiring supervision, they
ought to employ the Choreography pattern. This makes it clear that in one situation
adopting Choreography is presumed to be the better choice, while in the other employing
an Orchestration should be chosen.

Next, the Scope dimension encompasses 17 categories as described in Table 6.2:

59

6. A Catalogue of Design Guidelines for Microservices Architectures

Scope Description
Architecture Related to the architectural properties of a microservices sys-

tem.
Code Manage-
ment

Related to source code management and versioning in a mi-
croservices system.

Communication Related to the interaction and coordination between microser-
vices in a microservices system.

Data Consistency Related to the consistency of data across microservices in a
microservices system.

Data Manage-
ment

Related to the management and utility of data resources in a
microservices system.

Data Persistence Related to improving the management of databases in a mi-
croservices system.

Decomposition Related to the service decomposition principles.
Deployment Related to the deployment mechanisms and practices in a mi-

croservices system.
Development Related to the coding and implementation aspects of a mi-

croservices system.
Distribution Related to improving the distribution of microservices in a

logical way.
Entry Point Related to supplying the control access and entry point to

services or types of backends.
Fault Tolerance Related to solving problems around tolerating faults and error

handling.
Infrastructure Related to the infrastructure-level properties of a microser-

vices system.
Monitoring Related to the monitoring and post-deployment activities in

a microservices system.
Security Related to the security principles of a microservices system.
Supplementals Related to complementing and improving an existing design

guideline of a microservices system.
Testing Related to quality assurance and testability in a microservices

system.

Table 6.2.: Categories of Scope dimension

Lastly, the Design dimension encompasses the Migration and Universal categories:

Definition 12. A Migration guideline is exclusively meant to be used for the migration
from monolithic architectures to MSA.

Definition 13. A Universal guideline is generally applicable and always holds in mi-
croservices design and development. It is explicitly used in designing microservices from

60

6.2. Catalogue of MSA Design Guidelines

scratch or building cloud native architectures.

We understand that, in reality, an individual design guideline may portray multiple
ideas, may be responsible for multiple areas across a microservices system, and may
design the system using multiple strategies. However, considering the required level of
detail with respect to the categorisation of the catalogue for the purposes of this thesis,
we proposed a unitary categorisation scheme where only one category per dimension was
assigned to each design guideline.

6.2. Catalogue of MSA Design Guidelines
As a result of the research methods described in Chapter 4.3 and 4.5, and applying
the categorisation scheme from Section 6.1, we obtained a structured catalogue of 239
design guidelines, including best practices, design patterns, and design principles, that
serve to build meaningful MSA. The catalogue comprises the names and descriptions of
the design guidelines as well as the information of their mapped quality characteristics.
The complete catalogue is available via GitLab1. A preview of the first two rows of
the catalogue is shown in Table 6.3. The catalogue should be read from left to right.
The first row presents a design guideline with the serial number ”G1”. This guideline
is of the ”Best Practice” type, having the ”Architecture” scope, and pertaining to the
”Migration” design. Then, we have the name of the guideline i.e. ”Administer rehosting”
followed by its concrete and concise description. Next, we observe the mapped (affecting)
quality characteristics of this design guideline i.e. ”Accessibility, Scalability”. Lastly, we
see the reference numbers of the literature source(s) of the SLR corpus which mention
or discuss this guideline. The method explained to read this row can be applied to all
rows of the catalogue.

1https://git.rwth-aachen.de/faizan.zafar/master-thesis/-/tree/main/Catalogue

61

https://git.rwth-aachen.de/faizan.zafar/master-thesis/-/tree/main/Catalogue

6.
A

C
atalogue

ofD
esign

G
uidelines

for
M

icroservices
A

rchitectures

Guideline
(G#)

Type Scope Design Name Description Affecting
Quality
Charac-

teristic(s)

Literature
Source(s)

G1 Best Prac-
tice

Architecture Migration Administer
rehosting

Move a
legacy sys-
tem from
one platform
to a more
modern al-
ternative,
with mini-
mal changes.

Accessibility,
Scalability

[58]

G2 Best Prac-
tice

Architecture Universal Avoid vendor
lock-in

Choose
vendor-
neutral
interfaces
and tech-
nologies to
avoid vendor
lock-in.

Evolvability,
Perfor-
mance
Efficiency,
Deploy-
ability,
Portability,
Resource
Utilization

[5],[27],[51],
[52]

Table 6.3.: Guidelines Catalogue (Preview)

62

6.3. Analysis

6.3. Analysis
In order to get a high level overview, we analysed the catalogue with respect to the
number of design guidelines within each category. In the first level of categorisation
by the Type categories, we reported (126/239) design patterns, (40/239) design princi-
ples, (49/239) best practices, and (24/239) context-sensitive best practices, as shown in
Figure 6.1.

Figure 6.1.: Frequency of Design Guidelines by Type

Next, in the second level of categorisation by the Scope categories, we reported
(33/239) Architecture, (8/239) Code Management, (30/239) Communication, (4/239)
Data Consistency, (7/239) Data Management, (15/239) Data Persistence, (12/239) De-
composition, (9/239) Deployment, (23/239) Development, (18/239) Distribution, (5/239)
Entry Point, (15/239) Fault Tolerance, (17/239) Infrastructure, (9/239) Monitoring,
(9/239) Security, (20/239) Supplementals, and (5/239) Testing design guidelines, as
shown in Figure 6.2.

63

6. A Catalogue of Design Guidelines for Microservices Architectures

Figure 6.2.: Frequency of Design Guidelines by Scope

Finally, in the third level of categorisation by the Design categories, we reported
(28/239) Migration and (211/239) Universal design guidelines, as shown in Figure 6.3.

Figure 6.3.: Frequency of Design Guidelines by Design

With respect to the mapping of the design guidelines to the affecting quality charac-
teristics, we realised that a significant number of design guidelines mapped to multiple
quality characteristics. This occurred because a design guideline may be targeted to-
wards improving a certain facet of quality at a given time, with the possibility to cater
to other aspects of quality at a later point in time. This also signifies how much each
quality characteristic is relevant considering its trade-offs at a given time. We analyse
further aspects of the catalogue in detail in Chapter 7.1.

64

7. Discussion

In this chapter, we highlight and review the key findings from the results of the thesis.
Next, we answer all the research questions of the thesis. We also consider the implications
of the results of this work. Lastly, we discuss the threats to validity concerning this
research.

7.1. Results Findings

We analysed the meta-information of the SLR corpus which we obtained in Chapter 4.2.6
in order to portray a valid understanding of the state of academic research. Figure 7.1
illustrates the number of publications in the SLR corpus broken down by year of publica-
tion. From 2015 onwards, we observed a steep rise in the annual number of publications,
reaching an all-time high in 2021. These phenomena seem to closely coincide with the
increasing adoption of microservices for various use cases across the industry and the
rising trend in the publication of academic literature relevant to MSA in the past years.

Figure 7.1.: Frequency of Scholarly Papers by Year in the SLR corpus

During the data extraction process in Chapter 4.3, we came across discussions on a
variety of topics that we deemed meaningful and important to refer to when studying
the related work of this thesis. These topics could also be beneficial when pursuing the

65

7. Discussion

future work of the thesis. We listed such topics along with their literature sources in
Table 7.1.

Topic Literature Source(s)
Monolith to MSA Migration [6],[9],[10],[17],[24],[25],[26],[29],[30],

[35],[48],[51],[55],[56],[57],[58],[59],
[60],[61],[62],[63]

Quality in Microservices Applica-
tions and/or Architectures

[3],[5],[9],[10],[15],[17],[18],[23],[24],
[25],[26],[27],[28],[30],[31],[32],[33],
[34],[35],[37],[38],[39],[40],[41],[42],
[43],[45],[47],[49],[50],[51],[54],[55],
[57],[58],[60],[62],[63]

SLR/GLR [2],[3],[9],[10],[14],[31],[35],[41],[49],
[59],[62],[63]

Table 7.1.: Important Topics found in the SLR Corpus

Despite the high number of guidelines reported in the Guidelines Catalogue, some
guidelines represented specialised implementations (or variations) of other known guide-
lines. For clarity purposes, we specified this property of the variants in their descrip-
tions within the catalogue itself. For example, the Gateway Aggregation and Gateway
Offloading patterns are specialised versions of the API Gateway pattern. Additionally,
we came across a few MSA design guidelines which were in common with SOA such
as Asynchronous Messaging, Service Discovery, and Circuit Breaker. This makes sense
since the MSA pattern is a subset of the SOA paradigm [Neu15].

Design Patterns dominated the catalogue while Best Practices and Design Principles
were significantly less in number respectively. This can be attributed to the extensive
academic research that has been conducted on microservices design patterns and their
rising interest in industry over the years, similar to the trend observed in Figure 7.1.
Context-sensitive Best Practices turned out to be the least frequent guidelines, and
rightfully so, since we regard them as specialised practices pertaining to certain use
cases and subject to conditions. We also observed that the most frequently reported
design guidelines were related to the architectural properties followed by the ones related
to the interaction and coordination between microservices. Overall, some of the most
frequently occurring guidelines were Independent and automated deployment (including
independent development), Isolation of failures and Lightweight containerization in the
catalogue.
During our research, we noticed that a significant amount of publications use the terms

best practice, design pattern, and design principle interchangeably. Although widely dif-
fering from a theoretical perspective, these terms are not clearly distinguishable among
microservices professionals at all times. As a result, we witnessed that sometimes a
particular guideline was either classified in multiple categories or incorrectly classified in

66

7.1. Results Findings

some category. For example, in multiple papers, the guideline Continuous Integration/-
Continuous Delivery was designated as a design pattern. We analysed CI/CD and found
that it serves as a collection of well-defined activities related to agile software develop-
ment. It proposes a set of actions and tools for code integration, automating processes,
running test suites, and building deployment artefacts. This definition and description
implied that this guideline does not explain the solution to a well-defined problem, and
hence should not be classified as a design pattern. Moreover, it also demonstrates the
lack of a clear naming and definition convention for this guideline. Based on this analy-
sis, we were inclined to consider CI/CD as a best practice, reframing it according to the
appropriate naming convention. This was an example of how our research classified the
design guidelines as well as proposed standardised naming schema for the reported best
practices, design patterns, and design principles respectively. As a result, the proposed
classification and the naming schema majorly helped in establishing structure in the
catalogue and served as novel contributions of this thesis.
We realised that the categorisation of the design guidelines by categories of Type

dimension is not strictly sharp. We marked in the catalogue with an asterisk (*) such
guidelines whose category assignment requires further investigation. For example, the
catalogue mentions Choreography as a design pattern and Employ Choreography as a
context-sensitive best practice. Both of these guidelines refer to the same underlying
strategy with the difference of context. A similar observation we made was that for some
of the design guidelines, we did not anticipate their strict categorisation as explored in
the literature. For example, we would not expect Bounded Context as a design pattern for
microservice systems. The fact that Bounded Context is referred to as a design pattern
for Microservices Architectures in the literature shows that a meaningful classification
is needed in order to differentiate between design patterns such as Bounded Context and
design patterns such as API Gateway for MSA.
The mapping of the design guidelines to the quality characteristics is a direct con-

sequence of the research work performed for answering RQ1 and RQ2. Tables 7.2, 7.3
list the frequencies of the occurrences of the quality characteristics in the Guidelines
Catalogue, along with the percentage of coverage they entail.

67

7. Discussion

Quality Characteristic Frequency of
Occurrence

Coverage
(%)

Complexity 103 8.64%
Maintainability 82 6.88%
Coupling 64 5.37%
Security 62 5.20%
Reliability 58 4.87%
Performance Efficiency 56 4.70%
Scalability 55 4.61%
Evolvability 53 4.45%
Resource Utilization 52 4.36%
Availability 43 3.61%
Granularity 31 2.60%
Functional completeness 29 2.43%
Consistency 28 2.35%
Deployability 26 2.18%
Understandability 23 1.93%
Flexibility 22 1.85%
Quality-of-service 22 1.85%
Modifiability 21 1.76%
Compatibility 18 1.51%
Fault Tolerance 17 1.43%
Testability 17 1.43%
Interoperability 16 1.34%
Manageability 16 1.34%
Resilience 15 1.26%
Auditability 14 1.17%
Modularity 14 1.17%
Reusability 14 1.17%
Observability 13 1.09%
Stability 13 1.09%
Transactionality 12 1.01%
Usability 12 1.01%
Monitorability 10 0.84%
Traceability 10 0.84%
Cohesion 9 0.76%
Asynchronicity 8 0.67%
Loggability 8 0.67%

Table 7.2.: Frequencies and Coverage of Quality Characteristics in the Guidelines Cata-
logue

68

7.1. Results Findings

Quality Characteristic Frequency of
Occurrence

Coverage
(%)

Upgradability 8 0.67%
Elasticity 7 0.59%
Extensibility 7 0.59%
Changeability 6 0.50%
Functional correctness 6 0.50%
Functional Suitability 6 0.50%
Heterogeneity 6 0.50%
Longevity 6 0.50%
Portability 6 0.50%
Authenticity 5 0.42%
Configurability 5 0.42%
Accessibility 4 0.34%
Composability 4 0.34%
Discoverability 4 0.34%
Integrity 4 0.34%
Reproducibility 4 0.34%
Robustness 4 0.34%
Adaptability 3 0.25%
Cloudability 3 0.25%
Dynamicity 3 0.25%
Explainability 3 0.25%
Functional appropriate-
ness

3 0.25%

Recoverability 3 0.25%
Susceptibility 3 0.25%
Analysability 2 0.17%
Operability 2 0.17%
Verbosity 2 0.17%
Accountability 1 0.08%
Atomicity 1 0.08%
Capacity 1 0.08%
Confidentiality 1 0.08%
Consumability 1 0.08%
Exchangeability 1 0.08%
Visibility 1 0.08%

Table 7.3.: Frequencies and Coverage of Quality Characteristics in the Guidelines Cata-
logue (continued)

69

7. Discussion

Interestingly, we observed in the catalogue that Complexity, Coupling, Scalability,
Evolvability, Resource Utilization, Availability, were the most frequently mapped qual-
ity characteristics. We attribute this high frequency to the easy and fast deployment
principle of MSA, and to the objective of MSA to deliver high quality satisfaction.
On the other hand, Accountability, Atomicity, Capacity, Confidentiality, Consumability,
Exchangeability, Visibility were among the least mapped quality characteristics. Our
results proved to be in line with prior research on the topic. According to [BCK12],
the starting point for the quality attributes of an architecture can be defined in terms
of performance, availability and maintainability. According to the literature study in
[Di 17], performance and maintainability are the most investigated Quality Attributes
for Microservices Architectures. Lastly, [Li17] reveals a significance on performance,
maintainability and reliability as the most emphasised Quality Attributes for MSA in
research.

7.2. Research Questions Findings
In our research, we forged three research questions around which the whole thesis was
framed and that were defined towards the beginning of the thesis. The first research
question revolved around design guidelines of MSA and was structured as follows:

RQ1: Which design guidelines exist for constructing meaningful Microservices Archi-
tectures?
To answer this question, we performed a Systematic Literature Review to gather

the existing design guidelines associated with constructing meaningful MSA (refer to
Chapter 4.2). This led to the creation of a Guidelines Catalogue comprising 239 de-
sign guidelines, including best practices, design patterns, and design principles (refer to
Chapter 6). This research allowed us to gain perspective concerning the well-rounded
interest in microservices design guidelines.
The second research question was centered around the quality of MSA and was framed

as follows:
RQ2: Which quality characteristics adequately describe the quality of Microservices

Architectures and how can they be meaningfully represented in the form of a Quality
Model?

To answer this question, we proposed a Quality Model for MSA which explained 70
quality characteristics that collectively describe the quality of MSA meaningfully, and
illustrated how they they are interrelated (refer to Chapter 5).
Finally, the third research question focused on consolidating the previous research and

was devised as follows:
RQ3: Which quality characteristics are affected by the existing design guidelines of

Microservices Architectures?
To answer this question, we performed a mapping to identify which of the 70 quality

characteristics of the proposed QM are related to and affected by each of the 239 design
guidelines collected in the catalogue. We only used academic literature for the mapping.
The mapping was done in the Guidelines Catalogue in deriving its final version. In this

70

7.3. Implications of Results

way, the third research question holistically unites the main research artefacts of the
thesis.

7.3. Implications of Results
Our research relies on the notion that although the microservices technology possesses
great potential, it has not reached its anticipated success. From this, we deduced that
knowledge on how to design and develop microservices applications and architectures
optimally and feasibly has not been adequately structured, defined or standardised. In
addition, the problem lies with the inability to harness the guidelines collectively (e.g.
using design guidelines A and B together in order to utilise the maximum potential of
design guideline C), and the context-sensitivity i.e. some guidelines can only be observed
in certain circumstances. As a result, it becomes difficult for microservices developers
to realise the stakeholders’ requirements, and hence they are unable to deliver required
value. This can often result in financial loss for the stakeholder, and can negatively
impact the relationship between the developer and the stakeholder in the long run. To
mitigate this, our SLR approach unified knowledge in providing a diverse and broad
range of design guidelines targeted towards MSA. We regard the Guidelines Catalogue
as an important first step towards the standardisation of building MSA while catering to
specific quality requirements of stakeholders. We did not find such an in-depth catalogue
for the MSA domain scientifically devised in prior research. Thus, this work is a first of
its kind.

It is to be noted that not all reported design guidelines were proven to improve the
quality of MSA at a given time under a given constraint. For example, Database per
service was reported as a best practice in literature, however it might not be pragmatic to
implement in most organisations due to resource constraints. As an alternative, Shared
Database was proposed as a recommended solution because, although being an anti-
pattern, it improves the performance of the architecture. Hence, this work provides a
strong foundation for determining the precise affect (improvement or deterioration) of
the MSA design guidelines on the corresponding quality characteristics.
A holistic framework on the quality of MSA has been missing in academia and industry.

By investigating the quality characteristics relevant to MSA and proposing the QM, we
complement the existing research that has focused predominantly on a variety of software
QMs. With our work, we provide a credible background to gain a broader picture of
the quality characteristics present in the context of Microservices Architectures. Our
research approach is methodologically innovative as we extended the ISO/IEC 25010
Quality Model from [ISO11] using a variety of findings on quality characteristics relevant
to MSA. At the time of this research, we were not aware of any other Quality Model
that was built around MSA. Hence, the presented work is, to the best of our knowledge,
a novel research contribution and the only one of its kind.
During the evaluation phase, we obtained valuable feedback both with respect to the

structure of the Quality Model and the descriptions it offers. We converted this feedback
into a proposition of an improved model to enhance its usability and quality. Since our

71

7. Discussion

evaluation interviews were semi-structured, we harnessed the freedom to dive into details
with the participants when needed. Due to this freedom and owing to our heterogeneous
sample, we believe that the evaluation results in the finally proposed Quality Model
accurately reflect the views of the practitioners and researchers.
Our research led us to suspect a considerable gap in the knowledge of academia and

industry. We felt that the current research paradigm does not adequately cover all facets
of MSA to the required degree of depth. We attribute this to the novelty of the field and
its only recent adoption in industry and academia. Additionally, we acknowledged that
none of the interview participants who were industry practitioners mentioned the use of
research papers or academic literature for their work. From this, we deduced that the
real industrial problems and challenges are not sufficiently and appropriately addressed
in academic research. The lack of discussion in academia on the quality of MSA and
the lack of quality validation on real enterprise-scale systems is a problem that hinders
knowledge transfer between academia and industry.

7.4. Threats to Validity
To determine the threats to validity, we followed the definitions from [Woh+12] and
considered the internal and external threats to validity in relation to the entirety of the
results of this thesis.

7.4.1. Internal Validity
The internal validity studies the trustworthiness of the relationship established between
the research study and its results. One aspect to consider is our own possible biases
in the results of the SLR. We perceived a threat regarding selection bias towards the
inclusion, exclusion and selection criteria of the SLR. To mitigate this, we reported and
consulted all criteria internally. For the initially proposed Quality Model, we performed
an evaluation during which we reviewed and consulted the results with experts in the
field. This approach was meant to minimise the impact of subjectivity in the model.

7.4.2. External Validity
The external validity considers the generalisability of the research results to other situa-
tions. Since we comprehensively described and documented the SLR method, we believe
that the complete study could be reproduced as is. Another aspect to consider is the
limited scope and amount of resources used for the SLR. To mitigate this, we considered
as many possible papers that resulted from the application of the SLR method.
We anticipated personal biases in the participants’ statements and answers during

the evaluation interviews as a threat. Participants might comment in affirmation of
our proposed results, which could lead to confirmation bias. Participants might also
be scared to give an incorrect answer. We assumed these threats to be low since the
participants did not seem to be worried about highlighting negative aspects of the Quality
Model and boldly offered differing opinions.

72

8. Conclusion and Future Work

This chapter summarises the work done in this thesis and presents the future work.

8.1. Summary
In this work, we ascertained that it is important for software architects and developers to
observe a set of design guidelines in order to build purposeful MSA. Such guidelines direct
and advise on how to fundamentally structure, develop and maintain the microservices
system. In addition, we realised the limited understanding and lack of standardised
concepts in industry and academia around the quality of microservices applications and
architectures, including how it can be conceptualised and explained. We also argued that
following a particular design guideline seeks to solve a problem while affecting specific
quality characteristics related to the stakeholder requirements.

In this thesis, we conducted a SLR to collect existing design guidelines i.e. best
practices, design patterns, and design principles that are centered around constructing
meaningful MSA. Subsequently, we proposed a categorisation and naming schema to
structure the collected information in the form of a catalogue of 239 design guidelines.
We also performed a mapping in the catalogue in order to determine a set of quality
characteristics that are affected by each of the discovered design guidelines. Besides this,
we developed a Quality Model tailored to microservices applications and architectures
by extending the ISO/IEC 25010 QM. We proposed an initial version of the model, and
evaluated it with 13 microservices professionals from industry and academia in order to
finally put forward a revised Quality Model. This model reported and explained 70 qual-
ity characteristics that collectively and meaningfully describe the quality of microservices
applications and architectures.

8.2. Future Work
Since the catalogue is derived entirely from the SLR method, the method can be adjusted
to include more academic literature, and consequently discover new design guidelines. A
similar direction is to consider the inclusion of grey literature, and subsequently perform
a Grey Literature Review to determine particularly industry-driven design guidelines.
For the catalogue, a tool could be developed to store all the information in one place
and retrieve it conveniently when required.

While the search criteria for the SLR in this research was majorly centered around
best practices and design principles of MSA, the catalogue includes design patterns of
MSA that were naturally encountered during our investigation procedure as described

73

8. Conclusion and Future Work

in Chapter 4.2.2. In order to bridge the gap, future work in this direction could enhance
the catalogue specifically for microservices design patterns.
In order to bridge the knowledge gap between industry and academia, we realised that

assessing whether the design guidelines observed in industry for constructing MSA are
in coherence with the discovered design guidelines of the catalogue is a very important
issue and actually a study of its own. Since the Guidelines Catalogue was derived via
a systematic method which is consistently backed by academic research, we did not
consider a thorough evaluation of this artifact as part of this thesis and regard the same
for future work.
Regarding the proposed Quality Model, we believe it is imperative to further study

the model, especially its applicability in a given context, and refine it. As future work,
it is worth considering the quality characteristics with the point of interest being the
applicability of the model in particular use cases such as migration, service identification
etc. We imagine that additional evaluations of the proposed QM could be conducted in
terms of its clarity under the changes applied. The re-evaluations could include more
questions that were not put forward as part of this thesis. Additionally, the responses
given to the initially proposed QM could be compared to those given to the QM proposed
after the evaluation. This would make the results more reliable, allowing to use them
with higher confidence.
It is to be noted that a limitation of the ISO/IEC 25010 QM is that it caters only

to product quality. We found that the model does not describe process quality that is
utilised while designing and developing MSA. During our research, we discovered a few
properties, such as agility, that are rather fit to software process quality than to software
product quality, however we did not have enough input and resources to formulate
a holistic Quality Model around them. This opens up a future research direction in
formulating a relevant QM.

74

A. Appendix

75

A
.

A
ppendix

A.1. Descriptions of the Discarded Quality Factors

Quality
Attribute

Quality Factor Description of Quality Factor Literature Source(s)

Compatibility Co-existence Degree to which a microservice can perform its
required functions efficiently while sharing a com-
mon environment and resources with other mi-
croservices, without impacting other microser-
vices.

[34],[25],[12],[25],[51]

Functional
Suitability

Decomposability Degree to which an application can be partitioned
by dividing it into a subset of business-driven mi-
croservices.

[10]

Functional
Suitability

Functionality Microservices should be designed to encapsulate
well-defined set of functionality that is meaningful
to the business.

[15],[17],[23],[24],[25],[26],
[27],[28],[30],[31],[32],[33],
[34],[43],[50],[51],[58],[60],
[62],[63],[2],[9],[14],[16],
[19],[21],[52],[53],[56]

Maintainability Dependability Degree to which a microservice is dependent on
(or independent of) other microservices in a mi-
croservices system.

[32]

Table A.1.: Discarded Quality Factors with Descriptions

76

A
.1.

D
escriptions

ofthe
D

iscarded
Q

uality
Factors

Quality
Attribute

Quality Factor Description of Quality Factor Literature Source(s)

Maintainability Expandability Microservices applications should be flexible
enough to meet the future growth needs.

[26]

Maintainability Releasability Ability to rely on the rapid and independent re-
lease of individual components in a microservices
system.

[37]

Maintainability Traceability (in
development)

Degree to which information is available to track
changes in the artefacts produced in a microser-
vices system.

[10],[24],[33],[34],[35],
[47],[60],[7]

Maintainability Verifiability Ability to show that a microservices system is con-
sistent with its specification with respect to all the
specified quality requirements.

[44]

Portability Replaceability Degree to which a microservices system or
its underlying components (including technology
stacks) can replace other systems or components
for the same purpose in the same environment.

[17],[25],[26],[40]

Reliability Durability Services should be designed for long-term use,
without requiring excessive maintenance.

[24],[28],[53]

Reliability Repeatability Ability to add and remove replicas of a microser-
vice.

[16],[61]

Table A.2.: Discarded Quality Factors with Descriptions (continued)

77

A
.

A
ppendix

Quality
Attribute

Quality Factor Description of Quality Factor Literature Source(s)

Reliability Traceability (of
errors)

Ability to locate where in the microservices system
an error originated, and how it travelled through
several microservices.

[10],[41],[62]

Usability Learnability Degree to which a microservices system can be
used by specified users to achieve specified goals
of learning to use the system.

[34],[54],[48]

Usability Simplicity Ease with which a microservices system can be
developed and used.

[34],[42],[62],[5],[6],[9]

Table A.3.: Discarded Quality Factors with Descriptions (continued)

78

A.1. Descriptions of the Discarded Quality Factors

79

Bibliography
[Abd+18] M. Abdellatif et al. “State of the practice in service identification for soa

migration in industry.” In: International Conference on Service-Oriented
Computing. Springer. 2018, pp. 634–650 (cit. on p. 22).

[Abd+21] M. Abdellatif et al. “A taxonomy of service identification approaches for
legacy software systems modernization.” In: Journal of Systems and Software
173 (2021), p. 110868 (cit. on pp. 7, 8, 22).

[AFT19] U. Azadi, F. A. Fontana, and D. Taibi. “Architectural smells detected by
tools: a catalogue proposal.” In: 2019 IEEE/ACM International Conference
on Technical Debt (TechDebt). IEEE. 2019, pp. 88–97 (cit. on p. 18).

[AP19] A. Akbulut and H. G. Perros. “Performance analysis of microservice de-
sign patterns.” In: IEEE Internet Computing 23.6 (2019), pp. 19–27 (cit. on
p. 18).

[Bao+16] K. Bao et al. “A microservice architecture for the intranet of things and
energy in smart buildings.” In: Proceedings of the 1st International Workshop
on Mashups of Things and APIs. 2016, pp. 1–6 (cit. on p. 18).

[BC06] B. Bloom and B. Crabtree. “Making sense of qualitative research: the qual-
itative research interview.” In: Medical Education 40 (2006), pp. 314–321
(cit. on p. 33).

[BCK12] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice:
Software Architect Practice_c3. Addison-Wesley, 2012 (cit. on pp. 1, 3, 70).

[BD19] R. Bolscher and M. Daneva. “Designing Software Architecture to Support
Continuous Delivery and DevOps: A Systematic Literature Review.” In:
ICSOFT (2019), pp. 27–39 (cit. on pp. 6–8, 13, 18).

[Ber+17] Y. Berkunskyi et al. “Using microservices in educational applications of
IT-company.” In: 2017 IEEE First Ukraine Conference on Electrical and
Computer Engineering (UKRCON). IEEE. 2017, pp. 1208–1211 (cit. on
p. 18).

[Bev95] N. Bevan. “Measuring usability as quality of use.” In: Software Quality Jour-
nal 4.2 (1995), pp. 115–130 (cit. on p. 2).

[BGT16] B. Butzin, F. Golatowski, and D. Timmermann. “Microservices approach
for the internet of things.” In: 2016 IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). IEEE. 2016,
pp. 1–6 (cit. on p. 18).

81

Bibliography

[Bil+22] P. Billawa et al. “Security of Microservice Applications: A Practitioners’ Per-
spective on Challenges and Best Practices.” In: arXiv preprint arXiv:2202.01612
(2022) (cit. on pp. 7, 21).

[BNB17] C. Berger, B. Nguyen, and O. Benderius. “Containerized development and
microservices for self-driving vehicles: Experiences & best practices.” In:
2017 IEEE International Conference on Software Architecture Workshops
(ICSAW). IEEE. 2017, pp. 7–12 (cit. on p. 18).

[BNK20] S. Baškarada, V. Nguyen, and A. Koronios. “Architecting microservices:
Practical opportunities and challenges.” In: Journal of Computer Informa-
tion Systems 60.5 (2020), pp. 428–436 (cit. on pp. 7, 18, 33).

[BNS19] A. Brogi, D. Neri, and J. Soldani. “Freshening the air in microservices:
resolving architectural smells via refactoring.” In: International Conference
on Service-Oriented Computing. Springer. 2019, pp. 17–29 (cit. on p. 18).

[Bog+21] J. Bogner et al. “Industry practices and challenges for the evolvability as-
surance of microservices.” In: Empirical Software Engineering 26.5 (2021),
pp. 1–39 (cit. on pp. 7, 8, 18).

[Cab+20] E. Cabrera et al. “Towards a Methodology for creating Internet of Things
(IoT) Applications based on Microservices.” In: 2020 IEEE International
Conference on Services Computing (SCC). IEEE. 2020, pp. 472–474 (cit. on
p. 18).

[Che+15] H.-M. Chen et al. “Architectural support for DevOps in a neo-metropolis
BDaaS platform.” In: 2015 IEEE 34th symposium on reliable distributed
systems workshop (SRDSW). IEEE. 2015, pp. 25–30 (cit. on pp. 7, 19).

[Cle+20] S. B. Cleveland et al. “Tapis api development with python: best practices
in scientific rest api implementation: experience implementing a distributed
stream api.” In: Practice and Experience in Advanced Research Computing.
2020, pp. 181–187 (cit. on p. 19).

[CNZ16] C. E. Cuesta, E. Navarro, and U. Zdun. “Synergies of system-of-systems and
microservices architectures.” In: Proceedings of the International Colloquium
on Software-Intensive Systems-of-Systems at 10th European Conference on
Software Architecture. 2016, pp. 1–7 (cit. on p. 19).

[Col+21] T. Colanzi et al. “Are we speaking the industry language? The practice
and literature of modernizing legacy systems with microservices.” In: 15th
Brazilian Symposium on Software Components, Architectures, and Reuse.
2021, pp. 61–70 (cit. on p. 22).

[CZL21] F. Chen, L. Zhang, and X. Lian. “A systematic gray literature review: The
technologies and concerns of microservice application programming inter-
faces.” In: Software: Practice and Experience 51.7 (2021), pp. 1483–1508
(cit. on pp. 5, 7, 19).

82

Bibliography

[Di 17] P. Di Francesco. “Architecting microservices.” In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE. 2017,
pp. 224–229 (cit. on pp. 3, 70).

[DML17] P. Di Francesco, I. Malavolta, and P. Lago. “Research on architecting mi-
croservices: Trends, focus, and potential for industrial adoption.” In: 2017
IEEE International Conference on Software Architecture (ICSA). IEEE.
2017, pp. 21–30 (cit. on pp. 7, 19).

[Eis+20] S. Eismann et al. “Microservices: A Performance Tester’s Dream or Night-
mare?” In: Proceedings of the ACM/SPEC International Conference on
Performance Engineering. 2020, pp. 138–149 (cit. on p. 19).

[EZ21] A. El Malki and U. Zdun. “Evaluation of API Request Bundling and its
Impact on Performance of Microservice Architectures.” In: 2021 IEEE In-
ternational Conference on Services Computing (SCC). IEEE. 2021, pp. 419–
424 (cit. on p. 19).

[Far+21] H. Farsi et al. “Following Domain Driven Design principles for Microser-
vices decomposition: is it enough?” In: 2021 IEEE/ACS 18th International
Conference on Computer Systems and Applications (AICCSA). IEEE. 2021,
pp. 1–8 (cit. on p. 19).

[FF20] D. R. de Freitas Apolinário and B. B. N. de França. “Towards a method
for monitoring the coupling evolution of microservice-based architectures.”
In: Proceedings of the 14th Brazilian Symposium on Software Components,
Architectures, and Reuse. 2020, pp. 71–80 (cit. on p. 19).

[Gan+19] Y. Gan et al. “An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems.” In: Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. 2019, pp. 3–18 (cit. on
p. 19).

[GQ84] D. A. Garvin and W. D.-P. Quality. “Really mean.” In: Sloan management
review 25 (1984), pp. 25–43 (cit. on p. 2).

[GSS68] B. G. Glaser, A. L. Strauss, and E. Strutzel. “The discovery of grounded
theory; strategies for qualitative research.” In: Nursing research 17.4 (1968),
p. 364 (cit. on p. 25).

[GT19] J.-P. Gouigoux and D. Tamzalit. ““Functional-First” Recommendations for
Beneficial Microservices Migration and Integration Lessons Learned from an
Industrial Experience.” In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). IEEE. 2019, pp. 182–186 (cit. on p. 19).

[HBK20] S. Hassan, R. Bahsoon, and R. Kazman. “Microservice transition and its
granularity problem: A systematic mapping study.” In: Software: Practice
and Experience 50.9 (2020), pp. 1651–1681 (cit. on pp. 7, 19).

83

Bibliography

[HS19] A. Huf and F. Siqueira. “Composition of heterogeneous web services: A
systematic review.” In: Journal of Network and Computer Applications 143
(2019), pp. 89–110 (cit. on p. 18).

[HW+18] R. C. A. Hutapea, A. P. Wahyudi, et al. “Design Quality Measurement
for Service Oriented Software on Service Computing System: a Systematic
Literature Review.” In: 2018 International Conference on Information Tech-
nology Systems and Innovation (ICITSI). IEEE. 2018, pp. 375–380 (cit. on
pp. 7, 8, 13, 18).

[HWB17] S. Haselböck, R. Weinreich, and G. Buchgeher. “Decision guidance mod-
els for microservices: service discovery and fault tolerance.” In: Proceedings
of the Fifth European Conference on the Engineering of Computer-Based
Systems. 2017, pp. 1–10 (cit. on p. 19).

[ISO01] ISO/IEC. Software engineering — Product quality — Part 1: Quality model
(ISO/IEC 9126). 2001 (cit. on p. 26).

[ISO11] ISO/IEC. Systems and software engineering – Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) – System and software quality
models (ISO/IEC 25010). 2011 (cit. on pp. 2, 26, 27, 71).

[Jam17] K. Jambunathan. “Microservice design for container based multicloud de-
ployment microservice design for container based multi-cloud deployment.”
In: Jour Adv Res. Dyn. Control Syst (2017) (cit. on p. 20).

[JC19] C. T. Joseph and K. Chandrasekaran. “Straddling the crevasse: A review of
microservice software architecture foundations and recent advancements.”
In: Software: Practice and Experience 49.10 (2019), pp. 1448–1484 (cit. on
pp. 6, 7, 20).

[JPM17] P. Jamshidi, C. Pahl, and N. C. Mendonça. “Pattern-based multi-cloud ar-
chitecture migration.” In: Software: Practice and Experience 47.9 (2017),
pp. 1159–1184 (cit. on p. 22).

[Kap19] A. Kaplunovich. “ToLambda–Automatic Path to Serverless Architectures.”
In: 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR).
IEEE. 2019, pp. 1–8 (cit. on p. 20).

[Kas17] H. Kashfi. “Software engineering challenges in cloud environment: Software
development lifecycle perspective.” In: International Journal of Scientific
Research in Computer Science, Engineering and Information Technology
2.3 (2017), pp. 251–256 (cit. on p. 2).

[Kee+07] S. Keele et al. Guidelines for performing systematic literature reviews in
software engineering. Tech. rep. Technical report, ver. 2.3 ebse technical
report. ebse, 2007 (cit. on pp. 10, 13–16, 23).

[KM19] J. Kazanavičius and D. Mažeika. “Migrating legacy software to microser-
vices architecture.” In: 2019 Open Conference of Electrical, Electronic and
Information Sciences (eStream). IEEE. 2019, pp. 1–5 (cit. on pp. 6, 20).

84

Bibliography

[Lai+21] R. Laigner et al. “Data management in microservices: State of the practice,
challenges, and research directions.” In: arXiv preprint arXiv:2103.00170
(2021) (cit. on pp. 7, 20).

[Li+18] F. Li et al. “Microservice patterns for the life cycle of industrial edge soft-
ware.” In: Proceedings of the 23rd European Conference on Pattern Lan-
guages of Programs. 2018, pp. 1–11 (cit. on p. 20).

[Li17] S. Li. “Understanding quality attributes in microservice architecture.” In:
2017 24th Asia-Pacific Software Engineering Conference Workshops (APSECW).
IEEE. 2017, pp. 9–10 (cit. on pp. 3, 70).

[Lot+19] J. Lotz et al. “Microservice architectures for advanced driver assistance sys-
tems: A case-study.” In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). IEEE. 2019, pp. 45–52 (cit. on p. 20).

[Lüb+19] D. Lübke et al. “Interface evolution patterns: balancing compatibility and
extensibility across service life cycles.” In: Proceedings of the 24th European
Conference on Pattern Languages of Programs. 2019, pp. 1–24 (cit. on p. 20).

[MA18] G. Márquez and H. Astudillo. “Actual use of architectural patterns in microservices-
based open source projects.” In: 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). Ieee. 2018, pp. 31–40 (cit. on pp. 7, 20).

[MSM16] N. Mehta, D. Steinman, and L. Murphy. Customer success: How innovative
companies are reducing churn and growing recurring revenue. John Wiley
& Sons, 2016 (cit. on p. 2).

[MT10] N. Medvidovic and R. N. Taylor. “Software architecture: foundations, the-
ory, and practice.” In: 2010 ACM/IEEE 32nd International Conference on
Software Engineering. Vol. 2. IEEE. 2010, pp. 471–472 (cit. on p. 1).

[MT86] P. Y. Martin and B. A. Turner. “Grounded theory and organizational re-
search.” In: The journal of applied behavioral science 22.2 (1986), pp. 141–
157 (cit. on p. 25).

[Mul14] M. Muller. “Curiosity, creativity, and surprise as analytic tools: Grounded
theory method.” In: Ways of Knowing in HCI. Springer, 2014, pp. 25–48
(cit. on pp. 25, 28, 36, 41).

[Neu15] S. Neuman. “Building microservices: Designing fine-grained systems.” In:
Oreilly & Associates Inc (2015) (cit. on pp. 1, 12, 66).

[Nte+19] E. Ntentos et al. “Supporting architectural decision making on data manage-
ment in microservice architectures.” In: European Conference on Software
Architecture. Springer. 2019, pp. 20–36 (cit. on p. 20).

[Nte+20] E. Ntentos et al. “Assessing architecture conformance to coupling-related
patterns and practices in microservices.” In: European Conference on Soft-
ware Architecture. Springer. 2020, pp. 3–20 (cit. on p. 20).

85

Bibliography

[Nte+21] E. Ntentos et al. “Semi-automatic feedback for improving architecture con-
formance to microservice patterns and practices.” In: 2021 IEEE 18th Inter-
national Conference on Software Architecture (ICSA). IEEE. 2021, pp. 36–
46 (cit. on p. 20).

[Oli+20] T. de Oliveira Rosa et al. “A method for architectural trade-off analysis
based on patterns: Evaluating microservices structural attributes.” In: Pro-
ceedings of the European Conference on Pattern Languages of Programs
2020. 2020, pp. 1–8 (cit. on pp. 7, 20).

[OMA18] F. Osses, G. Márquez, and H. Astudillo. “An exploratory study of academic
architectural tactics and patterns in microservices: A systematic literature
review.” In: Avances en Ingenieria de Software a Nivel Iberoamericano,
CIbSE 2018 (2018), pp. 71–84 (cit. on p. 1).

[PJZ18] C. Pahl, P. Jamshidi, and O. Zimmermann. “Architectural principles for
cloud software.” In: ACM Transactions on Internet Technology (TOIT) 18.2
(2018), pp. 1–23 (cit. on pp. 8, 21).

[Pre+21] J. P. D. Preti et al. “Monolithic to microservices migration strategy in public
safety secretariat of Mato Grosso.” In: 2021 International Conference on
Electrical, Communication, and Computer Engineering (ICECCE). IEEE.
2021, pp. 1–5 (cit. on p. 22).

[Ras18] S. Rasmy. “Microns: Commands for Building Bubble Microservices.” In:
2018 Sixth International Conference on Enterprise Systems (ES). IEEE.
2018, pp. 158–165 (cit. on p. 21).

[Ren+18] Z. Ren et al. “Migrating web applications from monolithic structure to mi-
croservices architecture.” In: Proceedings of the tenth asia-pacific symposium
on internetware. 2018, pp. 1–10 (cit. on p. 22).

[Ric17] C. Richardson. “Microservices architecture (2014).” In: URL https://microservices.
io (2017) (cit. on p. 1).

[RS22] V. Raj and K. Srinivasa Reddy. “Best Practices and Strategy for the Migra-
tion of Service-Oriented Architecture-Based Applications to Microservices
Architecture.” In: Proceedings of Second International Conference on Ad-
vances in Computer Engineering and Communication Systems. Springer.
2022, pp. 439–449 (cit. on p. 22).

[SC98] A. Strauss and J. Corbin. Basics of qualitative research, techniques and
procedures for developing grounded theory., 2nd edn.(Sage: Thousand Oaks,
CA). 1998 (cit. on p. 24).

[Shi17] S. K. Shivakumar. “Content Management System Architecture.” In: (2017)
(cit. on p. 21).

[Sin+21] A. Singjai et al. “Patterns on deriving apis and their endpoints from domain
models.” In: 26th European Conference on Pattern Languages of Programs.
2021, pp. 1–15 (cit. on p. 21).

86

Bibliography

[Sol+21] J. Soldani et al. “The µTOSCA toolchain: Mining, analyzing, and refactor-
ing microservice-based architectures.” In: Software: Practice and Experience
51.7 (2021), pp. 1591–1621 (cit. on p. 21).

[Sou+17] T. B. Sousa et al. “Engineering software for the cloud: Messaging systems
and logging.” In: Proceedings of the 22Nd European Conference on Pattern
Languages of Programs. 2017, pp. 1–14 (cit. on pp. 7, 21).

[SRS20] N. Siegmund, N. Ruckel, and J. Siegmund. “Dimensions of software config-
uration: on the configuration context in modern software development.” In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.
2020, pp. 338–349 (cit. on p. 21).

[Sta15] I. O. for Standardization. Quality Management Systems-Fundamentals and
Vocabulary (ISO 9000: 2015). ISO Copyright office, 2015 (cit. on p. 2).

[Tai+17] D. Taibi et al. “Microservices in agile software development: a workshop-
based study into issues, advantages, and disadvantages.” In: Proceedings of
the XP2017 Scientific Workshops. 2017, pp. 1–5 (cit. on p. 21).

[Val+20] J. A. Valdivia et al. “Patterns related to microservice architecture: a mul-
tivocal literature review.” In: Programming and Computer Software 46.8
(2020), pp. 594–608 (cit. on pp. 7, 8, 21).

[VF21] V. Velepucha and P. Flores. “Monoliths to microservices-Migration Prob-
lems and Challenges: A SMS.” In: 2021 Second International Conference
on Information Systems and Software Technologies (ICI2ST). IEEE. 2021,
pp. 135–142 (cit. on pp. 7, 22).

[W C+19] R. W. Collier et al. “MAMS: Multi-Agent MicroServices�.” In: Companion
Proceedings of The 2019 World Wide Web Conference. 2019, pp. 655–662
(cit. on p. 21).

[Wag13] S. Wagner. “Software product quality control.” In: (2013) (cit. on p. 3).
[WKR21] Y. Wang, H. Kadiyala, and J. Rubin. “Promises and challenges of microser-

vices: an exploratory study.” In: Empirical Software Engineering 26.4 (2021),
pp. 1–44 (cit. on pp. 7, 13, 21).

[Woh+12] C. Wohlin et al. Experimentation in software engineering. Springer Science
& Business Media, 2012 (cit. on p. 72).

[Wur+17] M. Wurster et al. “Developing, deploying, and operating twelve-factor appli-
cations with TOSCA.” In: Proceedings of the 19th International Conference
on Information Integration and Web-based Applications & Services. 2017,
pp. 519–525 (cit. on p. 21).

[XWQ16] Z. Xiao, I. Wijegunaratne, and X. Qiang. “Reflections on SOA and Microser-
vices.” In: 2016 4th International Conference on Enterprise Systems (ES).
IEEE. 2016, pp. 60–67 (cit. on p. 22).

87

Bibliography

[Zim+20] O. Zimmermann et al. “Interface responsibility patterns: processing re-
sources and operation responsibilities.” In: Proceedings of the European Con-
ference on Pattern Languages of Programs 2020. 2020, pp. 1–24 (cit. on
p. 22).

[ZZ21] J. Zhao and K. Zhao. “Applying Microservice Refactoring to Object-2riented
Legacy System.” In: 2021 8th International Conference on Dependable Sys-
tems and Their Applications (DSA). IEEE. 2021, pp. 467–473 (cit. on p. 22).

88

Glossary
API Application Programming Interface

CI/CD Continuous Integration/Continuous Delivery

DevOps DevOps is a set of practices that combines software development (Dev) and IT
operations (Ops).

GI Gesellschaft für Informatik e.V.

GLR Grey Literature Review

MC Microservices Community

MSA Microservices Architectures

QA Quality Attribute

QF Quality Factor

QM Quality Model

RESTful A RESTful API is an architectural style for an API that uses HTTP requests
to access and use data.

RQ Research Question

SLR Systematic Literature Review

SOA Service-oriented Architectures

89

	Introduction
	Background
	Thesis Structure

	Problem Statement
	Motivation
	Research Questions
	Scope

	Related Work
	Literature Research

	Research Approach
	Overall Approach
	Performing a Systematic Literature Review
	Developing a Catalogue of Design Guidelines
	Formulating a Quality Model For Microservices Architectures
	Mapping Design Guidelines to Quality Characteristics

	A Quality Model for Microservices Architectures
	Preliminary Quality Model
	Evaluation of Preliminary Quality Model
	Revision of Preliminary Quality Model
	Revised Quality Model

	A Catalogue of Design Guidelines for Microservices Architectures
	Catalogue Categorisation Scheme
	Catalogue of MSA Design Guidelines
	Analysis

	Discussion
	Results Findings
	Research Questions Findings
	Implications of Results
	Threats to Validity

	Conclusion and Future Work
	Summary
	Future Work

	Appendix
	Descriptions of the Discarded Quality Factors

	Bibliography
	Glossary

