CEUR-WS.org/Vol-2625/paper—02.pdf

Removing Implicit Places
Using Regions for Process Discovery

Lisa L. Mannel®91 Robin Bergenthum?, and Wil M. P. van der Aalst!

1 PADS Group, RWTH Aachen University
{mannel, wvdaalst}@pads.rwth-aachen.de
2 FernUniversitét in Hagen
robin.bergenthum@fernuni-hagen.de

Abstract. Process discovery aims to derive a process model from an
event log. Most discovery techniques use Petri nets or produce results
that can be converted to Petri nets. Such discovered Petri nets may con-
tain implicit places, i.e., places that can be removed without changing the
behavior of the model. However, implicit places have a negative effect on
both the readability and the runtime of analysis techniques. Algorithms
that remove implicit places often focus on the structure of a Petri net
and need to solve complex optimization problems (e.g., using integer
linear programming). Applying a technique adopted from the area of
region theory, we show that by replaying an event log on a discovered
Petri net, we are able to identify and remove implicit places. The pre-
sented approach can be used in conjunction with a variety of discovery
algorithms. In this paper, we combine the approach with the eST-Miner
which greatly benefits from deleting implicit places during runtime. We
present an implementation and show first experimental results.

Keywords: Process Discovery, Petri Nets, Region Theory, Implicit Places

1 Introduction

Nowadays, most information systems record events of the processes they support.
These recordings can be stored in the form of an event log. Process discovery
aims to discover the underlying process of a given event log, extracting order,
concurrency, and dependencies from the recorded sequence of events. A broad
range of discovery algorithms has been proposed. On one end of this spectrum,
there is classical Petri net synthesis [1], which can return very precise models
with desirable guarantees but usually lacks integrated noise handling capability
and is quite time and space consuming. On the other side, we have specialized
discovery algorithms [15] which run faster and can handle noise, but usually
perform less well on precision and may not provide guarantees.

Petri nets are often used to represent process models. These Petri nets are
either used as input for other algorithms, for example, in the context of con-
formance checking, or they serve as a graphical process representation to be
interpreted by human beings. In the first case, the computational complexity of

20

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

the applied algorithms often scales with the size of the given Petri net, while in
the second case simplicity and readability are of importance, which are strongly
influenced by the size of the net as well. Therefore, we usually aim to provide the
smallest Petri net (in the number of places and transitions) that characterizes
the desired behavior well.

Unfortunately, process discovery algorithms often produce nets where some
of the places do not restrict the behavior, i.e., these places can be removed
without changing the language of the net. Such places are called implicit places
and have been well-studied in literature. Existing approaches aiming to remove
such places from a given Petri net, are based on solving time- and space-intensive
optimizations problems (Integer Linear Programming is NP-complete) based on
the structure of the Petri net [8,14]. Such approaches have been implemented in
several tools, for example, in VipTool and ProM [6,17].

Most synthesis approaches avoid returning implicit places by discovering a
minimal representation of all feasible places [2,3,9]. In region theory, these are the
places corresponding to so-called minimal regions [3,4,7], which were originally
defined on a transition system that defines the input language. In this paper,
we adopt ideas and concepts of these minimal regions to the context of process
mining: rather than identifying implicit places using the structure of the Petri
net itself or the detour over transition systems, we propose an approach that
heavily relies on the input event log as a source of information.

As a proof of concept, we combine the introduced approach with the eST-
Miner [10,11]. The eST-Miner enumerates candidate places for a given set of
transitions in some clever way. For each place, the miner replays the event log
to decide, whether the place is discarded or added to the final result. Here,
we present an implementation of the eST-Miner in ProM adapting the new
ideas of removing implicit places at runtime. We show the first very promising
experimental results of this implementation.

In Section 2 we introduce basic definitions and notation, before presenting
and proving the theoretical foundations of our approach. As a first case-study,
in Section 3 we describe the combination with the discovery algorithm eST-
Miner, and discuss first experimental results. Finally, we conclude the paper in
Section 4.

2 Petri nets and Theory of Regions

In this section, we recall the notion of Petri nets and the theory of regions. We
adapt ideas of so-called minimal regions to identify places that can be replaced,
thus creating a nicer process model. Therefore, we introduce the following no-
tions. Let f be a function and B be a subset of the domain of f. We write f|z to
denote the restriction of f to B. We call a function m: A — Ny a multiset and
write m =) ., m(a) - a to denote multiplicities of elements in m. We extend
some common operators to functions over Z as follows: for two functions fi, fo
and an operator o € {=,<} we have that f; o fo & Vo € X: fi1(z) o fa(z). We
define f1 # fo < 3z € X: fi(z) # fo(x). Based on this we write f1 < fa if

21

f1 < fo and f; # fo hold. Finally, for o € {4, —} we have that f3 = f1 0 fo &
Ve € X: f3(x) = fi(x) o fa(x). We denote A* the set of all finite sequences
over elements in A. Let 01 = (a1, az,...,a,) and o2 = (by,ba,...,by) be two
sequences, the concatenation of ¢1-04 is defined by (a1, as, ..., an,b1,b2, ..., by).

Petri nets have formal semantics, an intuitive graphical representation, and
are able to express concurrency among the occurrence of activities.

Definition 1 (Petri Nets and Firing Rule). A Petri net is a triple (P, T, W)
where P and T are finite disjoint sets of places and transitions, respectively, and
W: (P xT)U(T x P) — Ny is a multiset of arcs. A multiset mg: P — Ny is a
marking of (P,T,W). We call N = (P,T,W, mg) a marked Petri net, and call
myg the initial marking of N. Let t € T be a transition. We denote,

of == Z W (p,t) - p the preset of t and te:= Z W (t,p) - p the postset of t.
pEP pEP

We define the firing rule as follows: A transition t is enabled in marking mg if
mg > et holds. If transition t is enabled, transition t can fire. Firing t changes
the marking mq to

m' =mgy — ot + te

. . t
In this case, we write mg — m'.

Firing a transition changes the marking of a Petri net. Starting at the initial
marking, sequentially enabled sequences of transitions define its language.

Definition 2 (Language of a Petri Net). Let N = (P, T, W, mq) be a marked
Petri net. A sequence of transitions o = (t1,to, ..., ty) € T* is a firing sequence.
The firing sequence o is enabled in (P, T,W,mq) if there is a sequence of mark-

. ¢ ¢ ¢
ings (my,ma, ..., my,) such that mo —» my, my — Ma, ..., Mp_1 — My, holds.

In this case, we write mo — m,,. Note, that the empty sequence () € T* is always

enabled, i.e. Ym: m 9y . We denote L(N)={oceT*|m: P—Ng,mg = m}

the prefix closed language of N.

In graphical representations, markings of a Petri net are depicted by drawing
black dots, called tokens, in places. For example, if the multiplicity of a place
in a marking is three, we just show three tokens in that place. Obviously, the
number of tokens in places changes during the execution of a sequence according
to the firing rule. For every place, the token-function describes the number of
tokens based on a given firing sequence.

Definition 3 (Token-function). Let N = (P, T, W, mg) be a marked Petri net
and p € P a place. We define the token-function x,: T™ — Z of p by

:I;p(<t1; t2; e 7tn>) = mO(p) + Z(W(t’up) - W(p7 t2)>7
i=1
the number of tokens in p after firing (t1,ta, ..., t,).

22

Looking at the token-function of a place, we are able to make two simple
observations. First, if a net is able to execute a sequence o, then by Definition 1,
for all places, the resulting values of the token-functions are non-negative. Sec-
ond, by definition of the token-function, every transition adds (or removes) a
constant value of tokens to every place. Obviously, these values are defined by
the multiset of arcs.

Observation 1 Let N = (P,T,W,mg) be a marked Petri net, (t1,ta,...,t,) €
T* a sequence of transitions and p € P a place with token-function x,,.

(Z) <t1,t2, Ce 7tn> € ,C(N) =Vi<n: l'p(<t1,t2, e ,tifl,ti» > 0.
(13) zp((t1,t2, ... tn)) —xp({t1,t2, ... tn—1)) = W(tn,p) — W(p, tn).

Although Observation 1 seems to be straightforward, note that opposite di-
rection of (i) does not hold in general. Consider a place with three tokens and
a transition taking four tokens from this place, before putting five tokens back.
Even though this transition is not enabled (see Definition 1), by looking at the
token-function it seems that the transition is increasing the token-count from
three to four.

In the next proposition, we consider Petri nets without so-called self-loops,
i.e., for a certain place, every transition can either consume or produce tokens
but not both. For such Petri nets, we can obtain an even stronger result.

Proposition 1. Let N = (P,T,W, mg) be a marked Petri net without short-
loops (i.e. YVt € T,¥p € P: (W(t,p) =0V W(p,t) =0)), 0 = (t1,ta,...,tn) €T*
a transition sequence, and p € P a place with the token-function x,. We define
the one-place net Ny, by Ny = ({p}, T, Wl ({p} x1)u(Tx {p})> M0l {p})- Then we have

Vi <n:xp((t1,te,....t) >0 0 € L(N)

Proof (Proposition 1). From Observation 1 we already have that o € L(N,) =
Vi <n: .Tp(<t1,t2, N ,ti>) > 0.

It remains to be shown that Vi < n: z,({t1,t2,....t;)) > 0= o € L(N,).
To this end, assume there is a transition ¢ and sequence o € L(N,), such that
o-(t) ¢ L(N,). Then my|(,y = m|{yy and t is not enabled in m|(,,. By definition
of the firing rule (Definition 1) and Observation 1 we have that 0 < z,(0) =
m|gpy < Wi(p,t). Due to not having self-loops this implies W (t,p) = 0. Recalling
the definition of the token-function (Definition 3) we get x,(o-(t)) = m|gpy —
W(p,t) <O. O

Adapting the main ideas of the theory of regions, we define a condition to
determine whenever a random function on a set of firing sequences is a token-
function of some (yet unknown) place.

Definition 4 (Region). Let N = (P, T, W, mg) be a marked Petri net without
self-loops and let r: L(N) — Ny be a function. This function r is a region in N,
if the following conditions hold. For everyt € T and o-(t),o’-(t) € L(N):

r(o(t)) —r(o) =r(o’(t)) = r(o")

23

In Definition 4 we consider Petri nets without self-loops, implying that the
difference of the token-function of a place before and after executing a transition
directly determines the number (and direction) of arcs connecting the place to
that transition. For example, if firing a transition changes the token-function of
a place by adding three tokens, there are three arcs leading from the transition
to that place (i.e., an arc with weight 3).

Definition 5 (Place of a Region). Let N = (P, T, W, mg) be a marked Petri
net without self-loops, let v be a region in N, and let p ¢ P be a place. Assume
that for every t € T there is a sequence (tq, ..., t,,t) € L(N).

Then we can define a weight-function w: T — Z by w = r({t1,...,tn, 1)) —
r({t1,...,tn)). Using this well-defined weight-function, we define a multiset of
arcs W' ({p} x T) U (T x {p}) — No, connecting p to the set of transitions T':

W= > w)-(tp)+ >, —wt)-(p.t)

{tlw(t)=0} {tlw(t)<0}

We call p (connected via W') the place of r.

Observation 2 Let N = (P, T, W, mg) be a marked Petri net without self-loops,
such that for all t € T there is at least one trace (t1,...,tn,t) € L(N). Let r
be a region in N, and let p ¢ P be the place of r (Definition 5). Considering
the marked Petri net N, = ({p}, T, W', r(())), by construction, r is the token-
function of p. Since r is a region, it is non-negative for all o € L(N). According
to Proposition 1, L(N) C L(N,) holds. Thus, adding p to N via W’ does not
change the language of N, i.e. L(N) = L(PU{p}, T,WUW' mo+r({))).

In this paper, our goal is to identify places that can be deleted or replaced
to improve the model using regions. We improve the model by reducing the
number of tokens in places during the execution of the event log. This idea
is adapted from region theory as well. The related concept is called minimal
regions. However, in this paper, we want to identify pairs of places that define a
region leading to a place carrying fewer tokens according to its token-function.

Proposition 2 (Decreased Region). Let N = (P, T,W,mg) be a marked
Petri net without self-loops, such that for all t € T there is at least one trace
(t1,...,tn,t) € L(N). Let p1,p2 € P be two places, and xp,,xp, be the corre-
sponding token-functions. If xp, |r(Ny > Tp, |y then (2, —2p,)|£(n) 5 a Tegion.

Let p3 be the place of (xp, — p,)|c(ny (connected via its weight-function).
We can replace p1 by ps without changing the language of N.

24

Proof (Proposition 2). If x, |o(ny > Tp,|e(n), then (zp, — 2p,)[zv) is non-
negative. Let t € T be a transition and o-(¢t) € L(N) a firing sequence. Then, by
definition of the token-function (Definition 3), we have

(Tpy — Zpo) vy (0:(1)) — (@p, — Tpy)|(vy (0)
=(@p, ey (0-(8)) = 2py 3y (0:(1))) = (@, [() (0) = Tpy | £y (0))
=Zp,|e(v)(0) + W(t,p1) = W(p1,t) — Tp, | c(vy (o) = W(t, p2) + W (p2, 1)
= Zp, (v (0) + Tpy (v ()
=W(t,p1) — W(p1,t) — W(t,pa) + W(pa,1)

This shows that o, (2, —p,)|£(3) (0(t) = (Tp, —Tp,)| £(v)(0) is a fixed value for
every t (independent of o), and thus, (), — xp,)|z(v) is a region (Definition 4).

Recall, that a region is the token-function of its place by construction (Ob-
servation 2). Therefore, z,, = x,, — x,, is the token-function of the place ps.
According to Observation 2, we can add ps (via its weight-function) to N without
changing the language of N.

It remains to be shown, that removing p; from the Petri net N with p3 added,
does not change the language of the net. Let o € L(N) be a transition sequence.
Since xp, (0) = xp,(0) + zp, (o) holds, we have z,,(0) <0 = (zp,(0) <0) V
(xps(0) < 0). Looking at Proposition 1 we can remove p; as long as we keep po
and p3 without changing the language of N. O

3 Case Study Using eST-Miner

There are some conceptual differences between Petri net synthesis in general and
process discovery in particular. In process discovery, we are usually looking for
the control flow of an end-to-end process, which is described by a given event
log. An event log is a multiset of traces, and a trace is a sequence of activities.
When replaying an event log on a Petri net, executing an activity in the log
corresponds to firing a transition with the corresponding label. In this paper, we
assume a bijective mapping between activities and transitions.

In contrast to classical Petri net synthesis, process mining usually focuses
on unweighted Petri nets, meaning that every arc is either contained in the net
or not contained in the net. Additionally, many Petri nets modeling a process
contain self-loops. To model the proper completion of a process instance, we focus
on a subset of the language of the Petri net, that contains only the sequences
ending in a given final marking, i.e., the language is not prefix-closed.

Models discovered in process mining are usually interpreted by human beings,
or used as input for further computations, e.g. in the context of conformance
checking. Implicit places are undesirable, because they make interpretation of
the model and further computations unnecessarily complex. Fortunately, we can
adapt the approach summarized in Proposition 2 in the previous section to
identify and remove such places.

The basic idea of applying the approach to process mining is quite straight-
forward. As input, we expect an event log and the corresponding model. For a

25

pair of places p1, ps we replay the log and compare the markings of the places
after each fired transition. If z,, | > x,,|r, we compute the place ps of the
region (x,, — Tp,)|r- If p3 is present in the model, we identify p; to be implicit.

In the following case study, we investigate the combination of Proposition 2
with the discovery algorithm eST-Miner.

Combination with eST-Miner: The discovery algorithm eST-Miner obtains
a minimal overapproximation of the log by enumerating and evaluating all pos-
sible places, and then returning the subset consisting of all fitting places. In this
context, a place is considered to be fitting if it is

— feasible with respect to the log,
— connected by unweighted arcs, and
— empty in the beginning and at the end of replay.

Additionally, places discovered may contain self-loops.

Certain properties make eST-Miner particularly well suited to be combined
with our approach. The set of places discovered by eST-Miner is guaranteed to
contain all fitting places, that is, a few desirable places next to a vast number of
implicit places. Due to the many superfluous places, traditional approaches of
implicit place identification take a lot of time and space, and thus this algorithm
can strongly benefit from our approach. On the other hand, our approach of iden-
tifying implicit places can exploit the fact that all fitting places are guaranteed
to be discovered, to avoid some computations and checks and thus significantly
decrease computation time. Details will be provided in the description of our
implementation.

Note, that eST-Miner adds artificial start and end activities to the log, and
thus the discovered model. However, we apply our approach after this modifica-
tion, and therefore do not require any special treatment of these transitions, i.e.
we don’t care about modifications of the log done before starting the discovery
phase of the eST-Miner.

The notion of fitting places, as described above, calls for some modifications
to allow for the application of the results presented in Proposition 2. In particu-
lar, we need to take a closer look at the requirement of places being empty at the
beginning and end of replay, the restriction to unweighted arcs, and self-loops.

Emptiness at beginning and end: Recall, that places are considered to be
fitting only if they are empty at the end and beginning of replaying a trace. Given
two fitting places p1,pe with x,, | > Zp,|L, we can guarantee by construction
that the corresponding place p3 is empty at the beginning and end of the replay
as well: since we have z,, = zp, — Tp,, Tp, = Tp, = 0 implies z,, = 0. This
guarantee is needed to ensure that the place ps is indeed fitting and therefore
discovered by eST-Miner at some point.

Handling unweighted arcs: When comparing the two places p; and po, a

problem arises due to the restriction to unweighted arcs: even though all places
discovered by eST-Miner, including p; and ps, are unweighted (i.e. arc-weight

26

1), the place p3 based on the region (z,, — z;,)|z might be connected by arcs
with weight up to 2 by construction. See Figure 1 for an example. Therefore,
if we have z,,|r, > xp,|r, we need to verify that the corresponding place ps3
is connected by arcs that do not need weights. Only then can we declare p;
implicit. Fortunately, this check does not require significant computation time.

Fig. 1. Consider the event log L = 10 - (t1, t2,t3,t4) and the given Petri net. We have
that @p, |1 > p,|r and the corresponding place p3 (red) requires an arc with weight 2.

Handling self-loops: The places returned by eST-Miner often do contain self-
loops, not allowing us to directly apply Proposition 2. To avoid this problem,
we can easily transform the Petri net by replacing each transition ¢ by two new
transitions t1, to and a place p;, such that et = et|, ;0 = p,, ety = p; and te = tge
(see Figure 2). The resulting net is free of self-loops. For two original places
without self-loops, this has no impact on the relation between their markings.
For places with self-loops, this transformation allows to represent the removal
of the token when executing the self-loop (which is stored in the added place).
This results in a decrease in some reachable markings compared to the original
net, but never increases them.

Fig. 2. Transforming the transition ¢ in a Petri net with self-loops (left) to the transi-
tions t1,t2 in the corresponding Petri net without self-loops (right).

In our implementation, rather than transforming the Petri net, we simply
split the execution of a transition into a consuming event and a producing event.
In other words, we replay the log as if each transition was split to identify implicit
places.

While this strategy ensures, that we do not incorrectly identify a place as
implicit due to self-loops, there is a special case in which it prevents us from
correctly classifying a place p; as implicit: if p; connects the entry transition of

27

Fig. 3. Consider the Petri net discovered from the log L = 2 - (s,a,b,c,d,e,t) + 1 -
(s,a,c¢,b,d, e, t)y +3-(s,a,c,d,b,e,t). Marked in red is an implicit place remaining due
to self-loops in a parallel construct.

a parallel construct to its exit transition and has the largest set of self-loops of
all such places, then we cannot detect it as implicit. Assuming the log reflects
the parallel behaviour, there are traces containing the respective transitions in
varying order. Thus, for every place ps that we can compare to p;, there is an
execution order given by a trace such that ps retains all its tokens, while a self-
loop on p; briefly consumes a token before reproducing it, preventing us from
detecting p1|r, > po|r. For an example see Figure 3. Note, that all places pj,
that connect entry and exit transitions of the parallel construct but have only a
subset of the self-loops of py, are removed because we have pi|r > p1|L.

Implementation: We implemented two variants of combining our approach of
implicit place removal with eST-Miner, both of which incorporate the modifica-
tions described above. Moreover, we can exploit some of eST-Miner’s properties,
to make the overall approach more time- and, in particular, space-efficient.

We call the more straight-forward variant Final Place Removal (FPR). It
waits for the eST-Miner to return the final set of fitting places, and then com-
pares pairs of places p1,ps in random order. If x, |r > x,2|r, consider the
corresponding place ps. Since p; and po are feasible and empty in the beginning
and end of replay, we know that ps is feasible (Proposition 2) and empty in the
beginning and end of replay (see above). We verify that the arcs connecting it
are unweighted to ensure it is a fitting place. Then we can safely identify p; to
be implicit: we do not need to check whether p3 is actually contained in the set
of places, since eST-Miner guarantees to find all fitting places, in particular ps.
Note, that the relation < is transitive, and therefore we will end up with the
same set of minimal places, regardless of the order of place removal.

The second variant integrates the test for implicitness directly into the search
phase of eST-Miner, rather than waiting for a fully discovered Petri net. We call
this variant Concurrent Place Removal (CPR). Recall, that eST-Miner enumer-
ates and evaluates all possible places sequentially. For every place that is identi-
fied as fitting, we run a comparison with all previously discovered places. If for
two such places p1,ps we have zp, |1 > Zp,|1, we compute the corresponding
place ps and verify its arc weights. If the check is successful, we know p3 is fit-
ting and will therefore be discovered by eST-Miner, meaning that we can safely
remove pi. The set of places we keep in memory is kept as small as possible,
since we retain only the currently minimal places. Due to transitivity of < and

28

the eST-Miner’s guarantee to discover all fitting places, we will end up with the
same final set of places as FPR.

For both variants, we can further reduce the number of comparisons, and
thereby running time, by focusing on a particularly interesting subset of places,
that is, places which share an input transition with the place py. If p; is implicit,
there will be such a place allowing us to identify this: the marking of p; consti-
tutes the sum of the markings of the corresponding places po and ps, and thus,
whenever the number of tokens in p; is increased by a transition, this transition
must increase the tokens of po or p3 as well. Note that we could focus on shared
output transitions instead, but one of them is sufficient.

With respect to time complexity, in the worst case we have to replay the
whole log L for each pair of places in N = (P,T, W). Denoting the number of
events in L by |E(L)| = > . |o], this results in a theoretical time complexity of
O(|P|-|P|-|E(L)]). The eST-Miner may return all possible places as fitting places
in the worst case, leading to O(Z‘T‘ -2IT1) places as input to our implicit place
removal approach. Thus, the overall worst-case time complexity of the approach
combined with eST-Miner is O(2!/T! - |E(L)|). However, on real life event logs
we expect a much better performance, since we can utilize the properties of
the given log and Petri net to skip many unnecessary computational steps. The
experimental results presented below confirm these expectations.

Our implementation is available as a plugin in ProM ([17]). The first exper-
imental results are given in the following and seem very promising.

Ezxperimental results: We tested the approach on various logs, as listed in
Table 1. Implicit places are reliably removed as expected. Remaining are very
few implicit places due to self-loops and parallel constructs as discussed earlier in
this section. Fortunately, our experiments indicate, that these places are a very
minor problem: for the tested logs, out of thousands of implicit places, about one
such place may remain in the final model. The resulting nets are small enough
to easily apply the traditional ILP-based approaches to identify the remaining
implicit places. Alternatively, one could apply simple heuristics to remove places
with too many self-loops.

Besides the correct removal of implicit places, other important quality criteria
are the time and space efficiency of the approach. We summarize some statistical
results in Figures 4 and 5.

With respect to space-efficiency, the eST-Miner has the great advantage of
having minimal space requirements next to the log and final result, since only one
place is stored and evaluated at the same time. The same holds for both variants
of our implicit place removal approach. However, when combining eST-Miner
with our FPR variant, the intermediate set of fitting places can take significantly
more space than the final Petri net. Our experiments show, that the CPR variant
effectively avoids such an explosion of stored places. Figure 4 illustrates the

! This log has not yet been published. The 2017 version [13] is much smaller.

2 This log was generated to test the discovery of complex non-free choice structures
and self-loops.

29

Table 1. List of logs used for evaluation. The upper part lists real-life logs while the
lower part shows artificial logs. Logs are referred to by their abbreviations. The Sepsis
log and the HP2018 log have been reduced by removing all traces that occur only once.

Log Name Abbreviation Activities| Trace Variants
Sepsis-sto [12] Sepsis-sto 12 62
HelpDesk2018SiavAnon-sto HD18-sto 11 595
Road Traffic Fine Management [5]|RTFM 11 231
Teleclaims [10] Teleclaims 11 12
ILP-Milestone > ILP-Milestone 6 4
Loop-Version2 2 LoopV2 5 28

Number of Kept Places During Discovery

9
8
[%]
% 7
36 == |LP-Milestone
°
g3 RTEM
“ 4
S LoopV2
g 3
g 2 I I e Sepsis-sto
S e HP18-5t0
0

e Teleclaims

1

757
1513
2269
5293

~
—
V)
0

3025
3781
4537
6049
6805
7561
9073
9829
10585
11341
12097
12853
13609
14365
15121
15877
16633
17389

number of discovered places

o
T

Fig. 4. Number of places in model, that are stored when combining eST-Miner with
CPR for various logs.

relation between the number of discovered places versus the number of stored
places for this approach on various logs.

For the time efficiency, the number of performed place comparisons is of
upmost importance. In Figure 5, we compare the variants FPR and CPR us-
ing several measures. For each log investigated, we show the number of fitting
places and the number of final places remaining after removing the implicit ones.
For each variant, the time needed for implicit place removal and the number of
comparisons between pairs of places is given, as well as the ratio between them.
Interestingly, the CPR variant results in fewer comparisons made and signifi-
cantly less time is needed for all our investigated logs. In fact, the CPR variant
proves to be up to 86 times faster than the FPR variant.

For the ratio between the time needed and the number of place comparisons
on the other hand, no such clear relation could be obtained. One possible ex-
planation for this might be, that even though the final result is independent
from the order of places removed, the computational overhead can be reduced

30

Comparing CPR and FPR (Logarithmic Scale)

100000

14126
20099
13191
20471
26472
21195

B FPR Time [ms]
10000

4559

m CPR Time [ms]

1000
FPR Comparisons
100 CPR Comparisons

M FPR Time/Comparison:

H
- 5
I ss7
I e
I 3855
. -
I 1529
139
I 12109
. s
I 351
I 101

2047
I 2048

1

I 2686
I s
I 18139

o
I M CPR Time/Comparison:

M Fitting Places
H Final Places
=
3
3
S

Fig.5. Comparing CPR and FPR for various logs. CPR performs fewer comparisons
and proves to be up to 86 times faster than FPR. For the ration between time and
number of comparisons there is no such clear relation. The number of discovered fitting
and remaining final places is the same for both variants, as to be expected.

RTFM Sepsis-sto HP18-sto Teleclaims

0.1

o101 [N

0.024 (NN
0025
0.076 |

o011 [N
o017 [N
0.049 [N

0.001

by choosing this order in a smart way. Additional experiments are needed to
verify this theory.

4 Conclusion

The results presented above strongly support the applicability of our approach
in process mining. For future research, we have identified two main topics:

First, we are planning further testing and improvement of the combination
with eST-Miner. In particular, we would like to explore a possible adaption to
the noise handling abilities of this miner, as well as a potential use of implic-
itness results to improve the search phase by skipping sets of places that we
can deduce to be implicit. Also, the concurrent approach (CPR) could be in-
terrupted any time to return the current result, which improves the longer we
allow the algorithm to run. This could be particularly interesting when using a
variant of eST-Miner that returns places ordered by selected features of interest.
Another purpose of investigating certain place orderings is the possible decrease
of place comparisons needed to identify implicit places, and thus a decrease in
computation time.

Second, we will investigate the more general case of applying our approach to
identify implicit places to a given log and a Petri net originating from another
source, e.g. another discovery algorithm or user input. Here we are especially
interested in possible guarantees that we can provide based on properties of
the given log and net: if the event log is complete with respect to the language

31

defined by the Petri net, we can guarantee correct and complete implicit place
identification, however, the effect of weaker requirements on the input are cer-
tainly interesting. In this context, we will also investigate the potential of our
approach to not only remove implicit places, but to add places that improve a
given net to define a behaviour more similar to the given event log.

Acknowledgments: We thank the Alexander von Humboldt (AvH) Stiftung for
supporting our research.

References

1.

2.

oo

10.

11.

12.

13.

14.

15.

16.

17.

E. Badouel, L. Bernardinello, and P. Darondeau. Petri Net Synthesis. Text in
Theoretical Computer Science, an EATCS Series. Springer, November 2015.

R. Bergenthum. Prime miner - process discovery using prime event structures.
In International Conference on Process Mining, ICPM 2019, Aachen, Germany,
June 24-26, 2019, pages 41-48. IEEE, 2019.

J. Carmona, J. Cortadella, and M. Kishinevsky. A region-based algorithm for
discovering Petri nets from event logs. volume 5240, pages 358-373, 09 2008.

J. Carmona, J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. A symbolic algorithm for the synthesis of bounded Petri nets. pages
92-111, 06 2008.

De Leoni, M. and Mannhardt, F. Road traffic fine management process, 2015.

J. Desel, G. Juhés, R. Lorenz, and C. Neumair. Modelling and validation with
viptool. In W. M. P. van der Aalst and M. Weske, editors, Business Process
Management, pages 380—-389. Springer, 2003.

A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. Acta Informatica,
27(4):343-368, Mar 1990.

F. Garcia-Valles and J.M. Colom. Implicit places in net systems. Proceedings 8th
International Workshop on Petri Nets and Performance Models, pages 104—113,
1999.

R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri nets from
finite partial languages. volume 88, pages 157 — 166, 08 2007.

L.L. Mannel and W.M.P. van der Aalst. Finding complex process-structures by
exploiting the token-game. In Application and Theory of Petri Nets and Concur-
rency. Springer, 2019.

L.L. Mannel and W.M.P. van der Aalst. Finding uniwired Petri nets using eST-
miner. In Business Process Intelligence Workshop 2019. Springer, to be published.
Mannhardt, F. Sepsis cases - event log, 2016.

Polato, M. Dataset belonging to the help desk log of an Italian company, 2017.
M. Silva, E. Terue, and J. M. Colom. Linear algebraic and linear programming
techniques for the analysis of place/transition net systems, pages 309-373. Springer,
1998.

W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer, 2 edition,
2016.

van der Aalst, W.M.P. Event logs and models used in Process Mining: Data Science
in Action, 2016.

B.F. van Dongen, A.K.A. de Medeiros, HM.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In Applications and Theory of Petri Nets 2005, pages 444—454. Springer,
2005.

32

