
Removing Implicit Places Using Regions for
Process Discovery

Seminar - Selected Topics in Process Mining

Faizan Zafar

Chair of Process and Data Science
RWTH Aachen University

Germany
faizan.zafar@rwth-aachen.de

Abstract. Several processes executed in organizations are handled by
information systems which record event data in event logs. One of the
ideas behind process discovery is to discover process models using vari-
ous approaches tailored to different types of models. A Petri net is one
form of a process model. We aim to build simple Petri nets that are able
to reproduce the behaviour observed in the event log. An implicit place
occurrence within a Petri net would be such that its removal does not
affect the behaviour executed by the Petri net. To provide fine models,
we aim to search for simple places while avoiding adding implicit places.
In this paper, we describe a technique to identify and remove implicit
places that, in contrast to existing methods that are based solely on the
structure of the Petri net, takes into consideration the information con-
tained in the event log. The technique takes inspiration from the theory
of regions which transforms a transition system or a formal language
into a Petri net. Additionally, we discuss the application of this tech-
nique to improve the eST-Miner which focuses on finding fitting places
in process models. Finally, we highlight statistical results relevant to the
implementation outcomes of the proposed technique.

1 Introduction

The pervasive use of information systems in organizations has driven their ex-
pansion into the management of the organizations’ business processes. These
information systems are well equipped to store or log sequential event data per-
tinent to the business processes. The discipline of process mining proves to be
particularly useful for using this event data and gaining insights into the opera-
tional workflow of the organizations. In particular, the goal of process discovery
is to construct a process model from an event log such that it describes the
behaviour defined by the given log. An event log can be regarded as a multiset
of sequences of activities or events. Each sequence corresponds to one example
run of the process. Based on this multiset of example runs, we aim to discover a
process model that describes the underlying process.



2 Faizan Zafar

Processes can be represented in various ways but we focus on modelling
them using Petri nets. A Petri net is a theoretical model composed of places
and transitions. In particular, we focus on Petri nets where each activity in the
log corresponds to exactly one transition. Hence, process discovery is concerned
with finding the set of best places connecting the transitions.

Petri nets may accommodate implicit places which harbour the property
that their presence or absence in a Petri net does not alter the language of
the Petri net. Implicit places prove to be disadvantageous for process mining
purposes since they do not contribute meaningful behaviour to the Petri net.
They do not restrict the behaviour of the model more than the minimal set of
existing places already does. Implicit places basically clutter the model, make it
unreadable for human interpretation, decrease model simplicity, and also have a
negative impact on future tasks such as conformance checking. Hence, removal of
implicit places can benefit the process discovery phase (and subsequent phases)
in process mining.

In this paper, we examine the development of an approach for identifying
and removing implicit places as proposed in [10]. Additionally, we describe a
practical application of this approach to a known process discovery algorithm
- namely, the eST-Miner. The eST-Miner discovers Petri nets starting from a
place-less Petri net with one transition for each activity in the event log. Then,
the maximal set of fitting places is inserted into the Petri net [11]. We discuss
how the eST-Miner could immensely benefit from this technique.

The remaining paper is structured as follows: Section 2 presents the prelim-
inaries of Petri nets followed by Section 3 which outlines a primer on region
theory along with indicating the motivation behind the proposed technique.
Section 4 gives the theoretical and practical details pertinent to the proposed
algorithm, along with its running example. Section 5 considers the application
of the proposed technique to the eST-Miner ensued by Section 6 which discusses
the evaluation benchmarks of the implementation of the technique. Section 7
briefly discusses the related work relevant to the technique. Finally, Section 8
concludes the discussed work as well as possible extensions for future work and
ideas for improvement.

2 Preliminaries

In this section, we introduce the preliminaries associated with the discussed
work.

2.1 Petri net Theory

Activity, Trace, Event Log Let A denote the universe of all possible activities
or events, denoted by ε, a, b, c and d (with ε denoting the empty sequence) in
Figure 1.

A trace is a sequence containing a single start activity as the first element,
several intermediate activities, and a single end activity as the last element.
This is denoted by 〈a, b, c, d〉 in Figure 1.



Removing Implicit Places Using Regions for Process Discovery 3

An event log is a multiset of traces, denoted by L in Figure 1. Note that the
trace 〈a, b, c, d〉 occurs 4 times in the log as indicated.

Petri net Petri nets have a rigorous mathematical foundation and a substantial
body of process mining theory has been dedicated for their formal analysis in
literature [1].

A Petri net is a tuple (P, T, F ) where P is a finite collection of places, T is a
finite collection of transitions such that there are no common elements between
P and T (i.e, P ∩ T = ∅), and F is the flow relation as a multiset of arcs (i.e,
F ⊆ (P × T ) ∪ (T × P ) −→ N0).

As shown in Figure 1, a Petri net consists of four modelling aspects - namely,
places, transitions, arcs and tokens. In a graphical representation, transitions
are illustrated as boxes and places as circles. Transitions represent activities
contained in the event log while places represent the constraints connecting these
transitions. Places and transitions are connected via directed arcs. We denote
•t as the set of input places to a transition and t• as the set of output places
of a transition. The concept of tokens is deployed to symbolize the occurrences
during the execution of a process trace onto a Petri net. The presence of a
token inside a place is illustrated by a black dot and indicates the fulfilment of
a certain condition. Each place may contain one or several tokens. A marking is
described as the distribution of token(s) over the place(s). A multiset m0 −→ N0

is a marking of the Petri net (N,m0). (N,m0) is classified as a marked Petri net
with m0 as the initial marking of N .

A transition is enabled if each of its input places contains at least one token
i.e. m0 ≥ •t. A transition is dead at a marking m if it is not enabled at any
marking reachable from m. We consider the firing rule of marked Petri nets where
the execution of an enabled transition results in one token being consumed from
each of its input places and one token being produced in each of its output places.

Mathematically, for trace t, this rule is defined as: (P ;T ;F ;m0)
t
=⇒ (P ;T ;F ;m0−

•t+ t•).

Language of a Petri net For a marked Petri net (N,m0), a sequence of tran-
sitions σ = 〈t1, ..., tn〉 can possibly be a firing sequence within a Petri net. This
firing sequence can be regarded as enabled if there is a sequence of consequent
markings 〈t1, ..., tn〉 such that executing this sequence upon the markings leads

to a complete workflow from the starting place to the ending place i.e. mn−1
tn−→

mn. Moreover, the empty sequence 〈〉 always remains enabled (i.e, m
〈〉−→ m).

L(N) := {σ ∈ T ∗|m : P −→ N0,m0
σ−→ m} is defined as the prefix-closed

language of N describing all the prefixes of its possible traces, as shown in Table
1.



4 Faizan Zafar

Prefixes

〈a〉

〈a, b〉

〈a, b, c〉

〈a, b, c, d〉

Table 1: L(N) as the prefix-closed language of N

Implicit Place Implicit places are places possessing the distinctive property
that their inclusion to or elimination from a Petri net does not change the exe-
cuting behaviour that is allowed by the Petri net. An implicit place can also be
referred to as a redundant place [7]. Considering Petri net N in Figure 1, it is
observed that its language L consists of a single unique trace. With the removal
of place p1 from N , it is still possible to execute this trace, hence p1 is implicit.

Token Count Function The number of tokens in different places at any point
in time during the execution of a sequence varies depending upon the conditions
of the firing rule in Section 2.1. The token count function calculates the total
number of tokens present in a place p after firing a sequence 〈t1, ..., tn〉 in a
marked Petri net (P, T, F,m0) by:

xp(〈t1, ..., tn〉) := m0(p) +
∑n
i=1(F (ti, p)− F (p, ti))

This function adds to the initial marking and also considers the empty trace.

L = [ε, 〈a, b, c, d〉4]

Fig. 1: Petri net N

3 Theory of Regions

A conventional group of process discovery algorithms is based on region theory.
The basic idea of region theory is to identify regions in the event log or in a
derived representation of that log. This derived representation can, for example,



Removing Implicit Places Using Regions for Process Discovery 5

be a transition system or a prefix-closed language. The input can also be a spec-
ification that is not derived from a log. Each region corresponds to a feasible
place in the resulting Petri net. Region theory always aims to construct a Petri
net model with maximum fitness i.e, maximizing the ability to explain observed
behaviour. This is contrary to other process mining algorithms such as the ge-
netic miner [12], the fuzzy miner [8] and the heuristic miner [14] which primarily
focus on model simplicity and human readability.

A region is a mathematical structure in the form of a multiset of states or
language-prefixes satisfying certain conditions with respect to the event log. Each
region can be transformed into a place connecting the transitions in such a way
that the log can still be replayed on that place, and, thus the Petri net. The two
main types of region theory are state-based region theory and language-based
region theory elaborated in subsequent sections.

3.1 State-based region theory

In state-based region theory, the event log is transformed into a transition system,
and then this transition system is mutated into a Petri net. Formally, a transition
system (or TS) is defined as follows:

TS = (S,E, T ) defines a labelled transition system where S is the set of states,
E is the set of transition labels i.e, E = A ∪ τ where A is the set of activities
recorded in the log and τ is the set of activities not recorded in the log, and
lastly T is the transition relation such that T ⊆ S × E × S.

The transition system and Petri net have the ability to simulate each other
i.e, they are bisimilar. This confirms the notion that they are are behaviourally
equivalent and if the transition system exhibits concurrency, the Petri net may
be much smaller than the transition system [13].

3.2 Language-based region theory

In language-based theory of regions, we consider a language over finite alphabets.
From this language, it is possible to develop a Petri net with minimal behaviour
such that the vocabulary defined by the language contains possible firing se-
quences in the language of the Petri net. The Petri net is the active part whose
allowed words should be in the language. The concept of a region is then defined
as one of the feasible solutions of the linear inequation system, constructed for
a given language.

Please note that the event log needs to be represented as a prefix-closed
language as observed in Table 1. In the case of language-based regions, finding
a solution for each linear inequation in the system is of exponential worst-case
time complexity [3].



6 Faizan Zafar

3.3 Minimal Regions

In region theory, there are different approaches for finding the subset of regions
that correspond to the desired places. For example, minimal regions, wrong
continuations and base representation constitute among such approaches [10].
Minimal regions lead to places with maximum expressiveness and avoid adding
implicit places to a model [5]. For defining minimal regions, r and r′ are consid-
ered as regions inside a transition system. r′ is a sub-region of r if r′ is a subset
of r. r is a minimal region if and only if there is no other region r′ which is a
sub-region of r. For each minimal region r, a place p is produced.

For the purposes of the proposed technique, we do not aim to take the detour
via region theory, and instead we aim to transition directly from the event log
to the set of best places and, thus, the resulting model.

Basically, we have a process discovery algorithm which provides us with a
set of places based on the event log. From this set of places, we wish to keep the
feasible ones and remove all the implicit places. However, since computing the
regions is skipped, the existing filtering techniques cannot be applied directly.
Hence, we present an approach to identify and remove implicit places in the
discovered set of places. This approach is inspired by minimal regions and hence
decreases the number of implicit places in a model.

4 Removing Implicit Places

In this section, the main idea of the proposed algorithm is presented along with
its running example.

4.1 Assumptions

The Petri nets under consideration are marked Petri nets that do not allow for
self-loops and dead transitions but possibly allow for arc weights (or multiple
arcs). The language of the Petri net is equal as that of the prefix-closure defined
by the event log.

4.2 Main Idea

Given an event log and the corresponding Petri net, the idea behind the pro-
posed algorithm is to compare a pair of places by replaying the event log on
them while comparing the number of tokens they contain via the token count
function. Considering places p1 and p2 from the set P of places for a generic
Petri net N = (P, T, F,m0), the following conditions are ascertained:

Places p1 and p2 are compared and it is observed that for all sequences in
the language of the Petri net, the token count of p1 after executing a sequence is
always greater than or equal to the token count of p2 after executing the same
sequence. Mathematically, this is described as follows:



Removing Implicit Places Using Regions for Process Discovery 7

∀σ ∈ L(N) : xp1(σ) ≥ xp2(σ) (1)

There exists at least one sequence in this language where the token count of
p1 is strictly larger than the token count of p2. Mathematically, this is explained
as follows:

∃σ ∈ L(N) : xp1(σ) > xp2(σ) (2)

With the fulfillment of conditions (1) and (2), a novel and feasible place p3
can be computed with the criteria that its token count is always the difference
between the token counts of places p1 and p2 respectively.

xp3 = xp1 − xp2 (3)

With the existence of places p2 and p3 in the Petri net, it is safe to regard
p1 as implicit and remove it from the Petri net.

The theory behind this is supported by Proposition 2 in [10]. We again con-
sider Petri net N = (P, T, F,m0) without self-loops and a trace t which belongs
to the prefix-closed language of N . For places p1 and p2 and their respective
token count functions x1 and x2, if xp1 > xp2 for the prefix-closed language of
N , then (xp1 − xp2) is a region. Successively, we define p3 as the place of this
region. Accordingly, we can replace p1 by p3 without changing the language of
N .

4.3 Running Example

We consider the event log L = [ε, 〈a, c, e, g〉2, 〈a, e, c, g〉3, 〈b, d, f, g〉2, 〈b, f, d, g〉4]
with the discovered Petri net N as shown in Figure 2. The Petri net N is able
to generate the behaviour observed in L; however, it is unnecessarily complex.
The input places p5, p3 and p2 (marked in red) of transition g are implicit and
can be removed from the net without allowing for more traces. The non-implicit
places are marked in yellow and the start/end places are marked in blue.



8 Faizan Zafar

Fig. 2: Initial Petri net N derived from L

We will now proceed with applying the proposed implicit place removal tech-
nique in three different scenarios. Please note that we apply the implicit place
removal routine to the entire prefix-closed log in all cases.

Fundamental Case We consider the places p5 and p6. Initially, we replay the
trace 〈a, c, e, g〉 on the model. In the beginning of the replay, all places are empty
and both p5 and p6 have no tokens. Then, we fire transition a and this produces
1 token each in places p5 and p6. Then, we fire transition c which results in 1
token in place p5 and 0 tokens in place p6. Firing transition e subsequently does
not change the token count of p5 and p6. Finally, after firing transition g, all
tokens are consumed and all places are empty at the end of replay. Next, the
trace 〈a, e, c, g〉 is replayed on the model followed by the trace 〈b, d, f, g〉. Lastly,
the trace 〈b, f, d, g〉 is replayed on the model.

As observed in Table 2, the token counts are kept track of at each point
during replay. If we compare those token counts, we can see that place p5 has at
least as many tokens as place p6 at every point during replay. If the token counts
for places p5 and p6 would have been exactly equal, then we would realize that
both the places are exactly equal, hence one of them is implicit and it would be
safe to remove it without adding a new place.

In our case, there are nine examples where the token count of place p5 is
strictly larger than that of place p6. This means that if the difference between
places p5 and p6 is computed, we get token counts that are non-negative (i.e,
xp5 > xp6). Based on this difference, a novel place p7 can be constructed (as
shown in Figure 3), such that the number of tokens in this new place always



Removing Implicit Places Using Regions for Process Discovery 9

corresponds to the difference computed in Table 2. This also implies p5 as an
extraneous place.

ε a c e g ε a e c g

xp5 0 1 1 1 0 xp5 0 1 1 1 0

xp6 0 1 0 0 0 xp6 0 1 1 0 0

xp7 0 0 1 1 0 xp7 0 0 0 1 0

ε b d f g ε b f d g

xp5 0 1 1 1 0 xp5 0 1 1 1 0

xp6 0 0 0 0 0 xp6 0 0 0 0 0

xp7 0 1 1 1 0 xp7 0 1 1 1 0

Table 2: Calculation of novel place p7 as the difference of places p5 and p6

For the construction of place p7, we search where the token count of the new
place is changing in Table 2 and add the corresponding arcs as shown in Figure 3.
Considering the first trace 〈a, c, e, g〉 in Table 2, we witness that we have a token
count changing from 0 to 1 from a to c for p7. This means that firing transition
c should add one token to place p7, and we therefore add an incoming arc with
weight 1 from transition c. The token count remains unchanged from c to e so
no arcs are added. Lastly, we have a token count changing from 1 to 0 from e to
g. This occurs when we fire transition g, thus, transition g must be an outgoing
transition of the newly constructed place p7. This method of observing token
count differences and adding corresponding arcs is applied for all the traces in
L.



10 Faizan Zafar

Fig. 3: Intermediate step of introducing novel place p7

Place p5 turns out to be an implicit place and can be removed from the Petri
net while the newly introduced place p7 is always feasible with respect to the
model, hence it can be added in the final Petri net, as shown in Figure 4.

Fig. 4: Final Petri net N ′ obtained



Removing Implicit Places Using Regions for Process Discovery 11

Extended Case In the second case, multiple arcs from transitions to places are
considered and places p3 and p4 are inspected as shown in Figure 2. As for the
simple case in Section 4.3, the language L is replayed on the Petri net model.
The progress of token counts for p3 and p4 while executing L is kept track of
in Table 3. Here, place p3 turns out to be an implicit place and, additionally, a
novel place p8 is constructed (as shown in Figure 5), such that the number of
tokens in this new place always corresponds to the difference computed in Table
3.

ε a c e g ε a e c g

xp3 0 0 1 2 0 xp3 0 0 1 2 0

xp4 0 0 0 1 0 xp4 0 0 1 1 0

xp8 0 0 1 1 0 xp8 0 0 0 1 0

ε b d f g ε b f d g

xp3 0 0 0 2 0 xp3 0 0 2 2 0

xp4 0 0 0 1 0 xp4 0 0 1 1 0

xp8 0 0 0 1 0 xp8 0 0 1 1 0

Table 3: Calculation of novel place p8 as the difference of places p3 and p4



12 Faizan Zafar

Fig. 5: Intermediate step of introducing novel place p8



Removing Implicit Places Using Regions for Process Discovery 13

Place p3 turns out to be an implicit place and can be removed from the Petri
net while the newly introduced place p8 is always feasible with respect to the
model, hence it can be added in the final Petri net, as shown in Figure 6.

Fig. 6: Final Petri net N ′ obtained

Case of undiscoverable implicit place In the third case, places p2 and p1
are considered where, by construction, p2 is an implicit place as shown in Figure
2. Interestingly, p2 does not turn out to be an implicit place according to the
proposed technique. The reason being that there exists such a sequence where the
token count of place p2 is not strictly larger than that of place p1. This means
that the difference of token counts between places p2 and p1 is negative for
some instance. The mentioned phenomenon can be observed for trace 〈a, c, e, g〉
(marked in red) in Table 4. This case can be regarded as a limitation of the
proposed technique since xp2 > xp1 does not hold for some instance of the
model replay. This means that a minimal region is not formed from which a
feasible place p9 can be constructed.



14 Faizan Zafar

ε a c e g ε a e c g

xp2 0 0 0 2 0 xp2 0 0 2 2 0

xp1 0 0 1 1 0 xp1 0 0 0 1 0

xp9 0 0 -1 1 0 xp9 0 0 2 1 0

ε b d f g ε b f d g

xp2 0 0 2 2 0 xp2 0 0 0 2 0

xp1 0 0 1 1 0 xp1 0 0 0 1 0

xp9 0 0 1 1 0 xp9 0 0 0 1 0

Table 4: Calculation of novel place p9 as the difference of places p2 and p1 is not
possible

4.4 Correctness and Completion

Process mining is always based on some notion of completeness [2]. This means
that we can never realistically assume to have witnessed all possibilities in a
given event log. In reality, there exists a remarkable difference between the set
of possible traces found in the log and the set of possible traces in the Petri
net. For example, there might be additional trace(s) possible in the net but not
occurring in the log.

With respect to the correctness and completion aspects, the proposed tech-
nique guarantees to never delete non-implicit places. For completeness, nearly all
implicit places are identified, except for the special case of places with self-loops
within parallel constructs, as discussed in Section 5.3. Both of these propositions
hold only if the event log is complete with respect to the language defined by
the Petri net.

5 Application to the eST-Miner

In this section, we explore the combination of the proposed technique with the
eST-Miner process discovery algorithm.

5.1 Motivation

The eST-Miner process discovery algorithm takes inspiration from language-
based region theory and possesses the ability to find complex process structures,
improve model simplicity, and handle infrequently occurring model behaviour
[11]. The algorithm takes an event log as input and returns a set of places
connecting the various transitions. The underlying concept is to traverse all



Removing Implicit Places Using Regions for Process Discovery 15

candidate places and evaluate them using token replay, meanwhile omitting un-
interesting segments of the search space. This algorithm considers the notion of
fitting places where every place that can replay the event log on it and is empty
(i.e, without tokens) at the beginning and end of replay is considered fitting and
can be added to the final Petri net. The problem arises when the returned Petri
net does not only contain desirable places but also a significant number of re-
dundant places. Here, the proposed technique proves to be useful. These implicit
places can be removed in the post-processing step of the eST-Miner algorithm.

5.2 Removing Implicit Places in eST-Miner

The proposed approach benefits from some of the unique features of the eST-
Miner. Since the eST-Miner only keeps the event log, the final result and the
place being currently evaluated in memory, it is quite space efficient compared
to most other discovery algorithms mentioned in Section 3. The same holds
for the implicit place removal strategy under discussion since it also only keeps
in memory the event log, the final result, and the two places being compared
currently. Hence, combining these two aspects leads to an overall space-efficient
algorithm.

The eST-Miner guarantees the discovery of a set of all fitting places [11].
This means that if there are two places p1 and p2 under comparison and we
need to introduce a place p3 to prove that p1 is implicit, then we do not have to
check whether p3 actually exists in the Petri net. The existence of p3 is already
guaranteed by the eST-Miner.

Moreover, the fact that all fitting places are discovered can be used to skip
unnecessary place comparisons. For example, if there is a place p1 and we identify
it to be implicit due to places p2 and p3, then either place p2 or p3 is sufficient
to identify place p1 being implicit. This is possible since it is not needed to
check the existence of places as mentioned earlier. Additionally, we know that
either place p2 or p3 has a shared in-going transition with place p1. So when
comparing places, we can focus on places that share in-going transitions and
this results in significantly fewer comparisons. Therefore, the returned Petri net
defines the minimal behaviour containing the behaviour defined by the event log.
This makes the language of the Petri net complete for the entire prefix closure
defined by the log, which makes our theoretical results applicable.

Finally, since the eST-Miner involves the traversal of all candidate places
and evaluating them one after the other, two variants of the place comparison
strategy are implemented as follows:

Final Place Removal (FPR) The FPR variant is implemented in [10] where
the final set of places is computed and then we compare and subsequently remove
implicit places.

Concurrent Place Removal (CPR) Additionally, the CPR variant is im-
plemented in [10] where every discovered place is directly compared to existing
places and removed if found to be implicit.



16 Faizan Zafar

5.3 Challenges

The integration of our technique with the eST-Miner comes with its set of chal-
lenges. The eST-Miner allows for Petri nets with self-loops which contradicts our
theoretical assumptions. This problem arises during model replay. If the token
count during replay is simply compared, self-loops might not be detected. As an
example, places p1 and p2 are considered in the Petri net in Figure 7. Alongside,
the token counts while executing trace 〈b〉 are kept track of in Table 5. Place p1
has a self-loop on transition b. Both p1 and p2 have a token in the beginning and
transition b is executed. Nothing happens in place p2, so the token count there is
1. Similarly, the token in place p1 is consumed and produced again so the token
count remains 1. Hence, this proves that we are unable detect the token count
difference.

Eventually, we do not aim to delete place p1 because it is more restrictive
and its self-loop might have some purpose in the Petri net. Hence, a method
is devised to deal with self-loops as explained from Table 5 and Figure 7. The
consumption of tokens is detached from the production of tokens during replay;
so, whenever transition b is fired, tokens are consumed, leaving the place p1
without a token while place p2 has 1 token. This is observed in the x place of
the x/y notation in Table 5. Then tokens are produced which is demonstrated in
the y place of this notation. When the token counts of the places during replay
are compared, there is one instance where the token count of place p1 is smaller
than that of place p2, which prevents us from deleting place p1 as implicit.

Fig. 7: Petri net with self-loops



Removing Implicit Places Using Regions for Process Discovery 17

b b

xp1 1 1 xp1 1 0/1

xp2 1 1 xp2 1 1/1

Table 5: Token count on Petri net with self-loops

Finally, the special case of places with self-loops within parallel constructs
using the Petri net is considered in Figure 8. As an example, the places p1 and p2
are considered. If we choose to execute transition b before executing transitions
c and d, then the token count of place p2 will be larger than that of place p1,
and therefore p2 could possibly be removed. However, for traces that execute
transitions c and d before executing transition b, the token count of place p2
turns out to be smaller than that of p1 for some transitions because p2 consumes
tokens due to self-loops. This phenomenon holds for every possible place within
the parallel construct that we can compare place p2 to, hence it cannot be
identified as implicit.

Fig. 8: Self-loops

Please note that the aspects above are not central to the main algorithm but
rather rare in real-time experiments and do not impose a substantial problem in
application.

6 Evaluation

In this section, we highlight the statistical results relevant to the evaluation
characteristics of the proposed algorithm.



18 Faizan Zafar

6.1 Statistical Results

To gain an understanding of the evaluation criteria of the algorithm under dis-
cussion, the statistical results comparing the CPR variant with the FPR variant
in the ProM [6] implementation onto various event logs are reviewed. Please note
that we calculate the respective logarithmic scales for better intuitive interpre-
tation.

First, the impact of removing implicit places in Figure 9 is considered. A large
difference in the number of places that would have been found without removing
any implicit places in contrast to the remaining final places is observed. Please
note that, both, the CPR and FPR, variants result in the same number of final
and fitting places.

Fig. 9: Final Places vs. Fitting Places

Secondly, the runtime of FPR and CPR in Figure 10 are compared. It turns
out that CPR is always significantly faster than FPR. The reason being that
CPR performs significantly less comparisons, thus requiring substantially less
computation time. The CPR variant removes every place that it can identify
as implicit as soon as possible, and thus this place is never going to be used
for later comparisons. Meanwhile, the FPR variant has all the possible places
available for making comparisons and thus often compares a place to another
implicit place.



Removing Implicit Places Using Regions for Process Discovery 19

Fig. 10: CPR runtime vs. FPR runtime

7 Related Work

In this section, previous literature in accordance with the proposed technique is
discussed. The related work considers the identification of implicit places as an
Integer Linear Programming (ILP) problem, such as in [7].

7.1 Counting Petri net markings from reduction equations

The work in [4] discusses an approach for characterizing the state space of a Petri
net with the help of systems of linear equations. This method analyzes implicit-
ness properties and identifies implicit places based on mathematical constraints
and definitions. It focuses on developing a reduced Petri net architecture with
three categories of reduction rules which form the Petri net reduction system.
Removal of implicit places is one of these categories.

The linear inequation system identifies implicit places from the Petri net
allowing us to compute the number of reachable markings of the original Petri net
from the reduced Petri net and the reduction history. The method is particularly
useful for highlighting the state space of a Petri net. Moreover, it is appropriate
for checking whether a given reachable marking satisfies a given set of linear
constraints.

The work in [4] has been suggested as part of the post-processing step of the
eST-Miner in existing literature [11]. After the evaluation of potentially fitting
candidate places with respect to the given log, several places can be removed



20 Faizan Zafar

without changing the behaviour defined by the net since such extraneous places
are undesirable. As part of the post-processing step, researchers suggest to iden-
tify and remove implicit places from the discovered set of fitting places by solving
the ILP problem. The resulting minimal set of places is finally inserted into the
Petri net that forms the output of the eST-Miner.

8 Conclusion

In this paper, we outlined an approach to identify and remove implicit places
in marked Petri nets. This approach takes into account the information con-
tained in the event log and is inspired from minimal regions in region theory. We
presented the sequential and concurrent application schemes of the algorithm
in combination with the eST-Miner process discovery algorithm. In particular,
the CPR variant minimizes the returned set of places by immediately discarding
implicit places. Finally, we realized that the technique proves to be quite time
and space efficient.

8.1 Future Work

For future work, the combination of the proposed technique with various aspects
of the eST-Miner could be investigated further.

Firstly, the noise handling threshold of the eST-Miner could be adapted for
the log-based place comparison steps. Secondly, the efficiency of the candidate
traversal of the eST-Miner could be increased by omitting sets of uninteresting
places that are known to be unfitting. The CPR variant might allow us to use
the produced results to skip additional candidates and thus increase efficiency.
Lastly, in combination with the CPR variant, the eST-Miner could be adjusted
to return intermediate results or return results after a certain running time.

The order of place comparisons for calculating the token count differences
has an impact on the number of comparisons being performed and, thus, on the
overall runtime. Therefore, an idea is to develop strategies on how to choose the
order of comparisons which can potentially speed up the algorithm.

Devising a viable solution to the problem of self-loop places in parallel con-
structs in Section 5.3 would make the proposed approach more polished from a
theoretical perspective.

Finally, we could consider the application of the technique to other process
discovery algorithms. A viable example would be the Inductive-Miner algorithm
since it guarantees sound models [9]. The important point of investigation would
be the relation between the event log and the Petri net. In the special cases where
the event log differs significantly from the behaviour defined by the Petri net,
the fact that places can be added might be used to reduce this difference and,
thus, enhance the language defined by the Petri net.



Removing Implicit Places Using Regions for Process Discovery 21

References

1. W. Aalst and A. Ter. Verification of workflow task structures: A petri-net-baset
approach. Information Systems, 25:43–69, 03 2000.

2. W. V. Aalst, V. Rubin, B. V. Dongen, E. Kindler, and C. Günther. Process mining
: A two-step approach using transition systems and regions. 2006.

3. R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process mining based on
regions of languages. In G. Alonso, P. Dadam, and M. Rosemann, editors, Business
Process Management, pages 375–383, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

4. B. Berthomieu, D. Botlan, and S. Dal Zilio. Counting petri net markings from re-
duction equations. International Journal on Software Tools for Technology Trans-
fer, 22, 04 2020.

5. J. Desel and W. Reisig. The synthesis problem of petri nets. In P. Enjalbert,
A. Finkel, and K. W. Wagner, editors, STACS 93, pages 120–129, Berlin, Heidel-
berg, 1993. Springer Berlin Heidelberg.

6. B. Dongen, A. Medeiros, H. Verbeek, A. Weijters, and W. Aalst. The prom frame-
work: A new era in process mining tool support. volume 3536, pages 444–454, 06
2005.

7. F. Garcia-Valles and J. M. Colom. Implicit places in net systems. In Proceedings
of the The 8th International Workshop on Petri Nets and Performance Models,
PNPM ’99, page 104, USA, 1999. IEEE Computer Society.

8. C. W. Günther and W. M. P. van der Aalst. Fuzzy mining – adaptive process
simplification based on multi-perspective metrics. In G. Alonso, P. Dadam, and
M. Rosemann, editors, Business Process Management, pages 328–343, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

9. S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering block-
structured process models from event logs - a constructive approach. In J.-M.
Colom and J. Desel, editors, Application and Theory of Petri Nets and Concur-
rency, pages 311–329, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

10. L. Mannel. Removing Implicit Places Using Regions for Process Discovery. 06
2020.

11. L. L. Mannel and W. M. P. van der Aalst. Finding complex process-structures
by exploiting the token-game. In S. Donatelli and S. Haar, editors, Application
and Theory of Petri Nets and Concurrency, pages 258–278, Cham, 2019. Springer
International Publishing.

12. A. Medeiros, A. Weijters, and W. Aalst. Genetic process mining: An experimental
evaluation. Data Mining and Knowledge Discovery, 14:245–304, 04 2007.

13. W. M. P. van der Aalst and B. F. van Dongen. Discovering petri nets from event
logs. In K. Jensen, W. M. P. van der Aalst, G. Balbo, M. Koutny, and K. Wolf,
editors, Transactions on Petri Nets and Other Models of Concurrency VII, pages
372–422, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

14. A. Weijters and W. Aalst. Rediscovering workflow models from event-based data
using little thumb. Integrated Computer-Aided Engineering, 10:151–162, 07 2003.


